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ARTICLES 
Polish Mathematicians Finding Patterns 

in Enigma Messages 

C H R I S  C H R I S T E N S E N  
Northern Kentucky University 
H ighland Heights, KY 41099 

christensen@nku.edu 

Whenever there is arbitrariness, there is also a certain regularity. There is no 
avoiding it. Marian Rejewski [14b, p. 235] . 

This is a story about heroes. Its heroes are three Polish mathematicians who in the 
decade before World War II broke German Enigma messages. It seems rare that math
ematicians are heroes of stories, and it seems even rarer that they are heroes because 
they are mathematicians. A recent exception is Robert Harris '  novel Enigma [7] (and 
the 2002 Michael Apted film Enigma that was based upon it) . In Enigma, which is 
based upon the work of the British World War II codebreakers at Bletchley Park, the 
hero is Tom Jericho, a mathematician whose successes are loosely based upon the 
work of Alan Turing. (The novel Enigma was reviewed by Peter Hilton who served at 
Bletchley Park from 1 942 until the end of the war in Europe in the June 1 996 Notices 
of the American Mathematical Society [8] . )  

World War II seems to mark a change in cryptology. Although mathematician 
Werner Kunze was recruited as a cryptologist by Germany in World War I 1 and there 
are examples of mathematicians studying codes and ciphers throughout the history of 
cryptology, World War II seems to mark the point at which cipher bureaus began to 
recruit mathematicians for their problem solving abilities-for their abilities to find 
patterns. The Government Code and Cipher School at Bletchley Park recruited many 
mathematicians. Probably their two most famous recruits are Alan Turing [10] and 
Gordon Welchman [27] . The United States Signals Intelligence Service, which was or
ganized by William Friedman, had among its first recruits two mathematicians, Frank 
Rowlett [23] and Abraham Sinkov [26] , and statistician Solomon Kullback [17] . The 
heroes of our story Jerzy Rozycki (Roozh-IT-ski), Henryk Zygalski (Zig-AHL-ski), 
and Marian Rejewski (Rey-EF-ski)2 were mathematics students at Poznan University 
when they were recruited into a cryptology course in 1 929. 

The story of the Polish mathematicians' success against Enigma is well known to 
cryptologists . Rejewski was able to use elementary theorems about permutations to 
determine the wiring of the Enigma rotors and to determine the Enigma settings . "If 
ever there was a real-world story problem handed to mathematics teachers on a silver 
platter, this would be it." [21 ,  p. 37 1 ]  

We will return to the work of the three Polish mathematicians, but first we will take 
a moment to examine substitution ciphers and the operation of Enigma. 

1 "Kunze was presumably the first professional mathematician to serve in a modem cryptanalytic bureau." [2, 

p. 85] 
2Guides to pronunciation are taken from [14] .  
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Subst i tution Ci phers 

SAKSP VPAPV YWAVH QLUS 

A substitution cipher is a method of concealment that replaces, for example, each letter 
of a plaintext message with another letter. Here is the key to a simple substitution 
cipher: 

Plaintextletters : abcdefghij klmnopqrstuvwxyz 
Ciphertextletters : EKMFLGDQVZNTOWYHXUSPAIBRCJ. 

The key gives the correspondence between a plaintext letter and its replacement 
ciphertext letter. (It is traditional to use small letters for plaintext and capital letters for 
ciphertext.) Using this key, every plaintext letter a would be replaced by ciphertext E, 

every e by L, etc . The key describes a permutation of the alphabet. Just as in abstract 
algebra courses, the internal structure of the permutation is revealed when it is written 
as a product of disjoint cycles . In this case, our permutation consists of a 1 0-cycle, two 
4-cycles, one 3-cycle, two 2-cycles, and a 1 -cycle. 

(aeltphqxru) (bknw) ( cmoy) (dfg) ( iv) ( j z ) ( s )  
There are 26! = 403 , 29 1 , 46 1 , 1 26 ,605 , 635 , 584 ,000, 000 possible keys for such sim
ple substitution ciphers. The security of ciphers often depends on the cipher "having 
a large key space"-having too many keys for the cryptanalyst to do a brute force at
tack of trying all the keys. This is certainly the case for our substitution cipher. If the 
cryptanalyst tried one key per second, it would take 4,667,725 ,244,520,898,560,000 
days to try all possible keys .  Yet, such keys are used to encipher the cryptograms that 
appear regularly in newspapers and puzzle books, and these cryptograms are routinely 
broken in a few minutes.  What makes it possible to break these ciphers? 

Patterns. Every language has rules so that the language "makes sense." These rules 
create patterns in messages that can be exploited by cryptanalysts . Usually cryp
tograms that appear in newspapers preserve word length and punctuation, but even 
without that information these simple substitution ciphers can be solved. The letter e 
is the most frequent letter in plaintext English. If we used the key that was described 
above, we would expect that the most frequent ciphertext letter would be L. Now, it 
might not be, but it is likely that the most frequent ciphertext letter corresponds to one 
of e, t, a, o, i, n, or s .  Using letter frequencies and other patterns, simple substitution 
ciphers are usually quickly solved. Such an attack on ciphertext is called frequency 
analysis.  

Here is a more secure method of enciphering. Instead of using the same permutation 
to replace each letter of the plaintext, we will have a collection of permutations and will 
use one permutation to determine the replacement for the first letter, another permuta
tion to determine the replacement for the second letter, etc. Certainly there are enough 
permutations available to use a different permutation for each plaintext letter. This is 
the idea for the cipher called a one-time pad; it is the only provably secure cipher. But, 
there are practical problems that makes it difficult to implement this idea by hand
keeping track of the order in which the permutations will be used and communicating 
the order to an authorized receiver. The one-time pad is provably secure because it 
uses a random ordering of the permutations; there are no patterns for the cryptanalyst 
to discover. The classical Vigenere cipher, which was developed in the Sixteenth Cen
tury, is based on a similar idea, but it uses a small number of permutations-typically 
many fewer than the number of characters in the message. The key for a Vigenere 
cipher prescribes a rotation among the permutations-permutation number one, per
mutation number two, . . .  , permutation number n-repeated as necessary depending 
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on the length of the plaintext message. The Vigenere cipher was broken in the Nine
teenth Century by using frequency analysis to discover patterns that become evident 
in the sets of ciphertext letters that are enciphered using the same permutation. 

Enigma is a mechanical way to generate a large number of permutations. Although 
it was one of the first, Enigma was not the only machine cipher. For example, during 
World War II, the United States used William Friedman's SIGABA, and the British 
used TypeX. In fact, rotor machines dominated cryptography from the 1 920s into the 
1 970s.  Enigma began as a device to protect commercial communications. 

Enigma 

If you have no good coding system, you are always running a considerable risk. 
Transmitted by cable or without wire, your correspondence will always be ex
posed to every spy, your letters, to being opened and copied, your intended or 
settled contracts, your offers and important news to every inquisitive eye. Con
sidering this state of things, it is almost inconceivable that persons interested in 
those circumstances should delay securing themselves better against such things. 
Yet, ciphering and deciphering has been a troublesome art hitherto . . . .  Now, we 
can offer you our machine "Enigma ", being a universal remedy for all those 
inconveniences. 

Mid- 1 920s Enigma sales brochure reprinted in the 
July 2001 Cryptologia. See [28, p. 246] . 

Although Enigma was only one of a family of machine ciphers, it has attracted the most 
interest because of the exciting stories of the "duels" between the machine and, first, 
the Polish and, then, the British codebreakers. The story of the solution of Enigma 
began to become visible in 1 974 with the publication of The Ultra Secret by F. W. 
Winterbotham [29] . Since that time much has been written about Enigma and the duel. 
Because of the secret nature of military cryptography and cryptanalysis, that story is 
often muddled and contradictory, but there is a clear trail from Arthur Scherbius'  1 9 1 8  
patent of a machine designed to protect commercial communications to the German 
military Enigma of World War II. 

Here is how Enigma works . The Enigma machine consists of four visible compo
nents : a keyboard, a plugboard, a rotor system, and a lampboard. (See the front cover 
and Figure 1 .) Enigma has both electric and mechanical parts. The executive summary 
of its operation is that the operator pushes a plaintext letter on the keyboard and the 
corresponding ciphertext letter is lighted on the lampboard. 

Forget for a moment about the mechanical part of Enigma and follow the electrical 
action from the keyboard to the lampboard in Figure 2. 

When the operator pushes a key on the keyboard (A is the key in the diagram), an 
electrical current passes from the key to the plugboard. The plugboard looks like an 
old telephone switchboard. There are 26 sockets-one for each letter of the keyboard. 

Throughout the war, the Enigma machine evolved and the methods for using it 
changed. Different branches of the German military used different models of the ma
chine, and the same model was used in a different manner by different branches .  So, a 
description of how Enigma operated is dependent on who was using it and when they 
were using it. This description applies to the Enigma that the Polish mathematicians 
were attacking in 1 932. 

When the Polish mathematicians began their attack on Enigma, six plugs were in 
use. Each plug would connect (in a way prescribed by the key) one letter on the plug
board to another. The effect of the plugboard was to swap six pairs of letters and let 
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Lamps 

Keyboard 

Figure 1 Closed Enigma Figure 2 Enigma Diagram 

the remaining 14letters pass through unchanged. The plugboard consisted of six trans
positions; 14 letters were fixed by the plugboard permutation. Later in the war, more 
plugs were used. In the diagram, the plugboard permutation includes the transposi
tion (AC); so, A is replaced by C by the plugboard. (Not all versions of Enigma had a 
plugboard.) 

After passing through the plugboard (Steckerbrett, steckerboard), the electrical 
charge passed into the rotor system. In 1932, the rotor system consisted of three rotors 
and a reflector. Each rotor permuted the letters of the alphabet. The right-hand side 
of each rotor had 26 spring-loaded input terminals arranged around the disk; the left
hand side had 26 flat circular output terminals. Each input was wired to an output. The 
wiring determined the permutation. At the time that the Polish mathematicians began 
attacking Enigma, the machine had only three rotors; later the machine had as many 
as eight rotors from which either three or four were installed depending on the type 
of Enigma in use. Rejewski and the other Polish mathematicians did not know the 
wirings of the rotors. As we will see later, one of Rejewski's remarkable feats was his 
determination of the rotor wirings from intercepted messages alone. The three rotors 
were labelled I, II, and ill; the labels identified the rotors but did not correspond to 
the positions of the rotors in the machine. When placing the rotors in Enigma, all six 
orderings of the three rotors were possible. In Figure 2, the rotors have been installed 
in the order I, m, II. The permutations accomplished by the three rotors are: 

Rotori (aeltphqxru)(bknw)(cmoy)(dfg)(iv)(jz)(s) 
Cycles 10 4 4 3 2 2 1 

Rotor II (a) (bj) (cdklhup) (esz) (fixvyomw) (gr) (nt) (q) 
Cycles 8 7 3 2 2 2 1 1 

Rotor ill (abdhpejt) (cflvmzoyqirwukzsg) (n) 
Cycles 17 8 1 

Following the diagram, the electrical charge enters the rotor system as C. C enters 
the right-hand rotor and exits as D, D enters the middle rotor and exits asH, H enters 
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the left-hand rotor and exits as Q, and then Q enters the reflector at the left of the rotor 
system. 

The reflector was "half a rotor." There were only 26 contacts on the right-hand side 
of the reflector. Internally, the 26 contacts were joined in pairs by wires to create a per
mutation consisting of 1 3  disjoint transpositions. At the time that we are considering, 
Enigma had just one reflector (reflector A). Its wiring was also not known to the Poles.  
It creates the following permutation: 

Reflector A(ae)(bj)(cm)(dz)(fl)(gy)(hx)(iv)(kw)(nr)(oq)(pu)(st) 

In the diagram, Q enters the reflector and exits as 0. 
Then the electrical charge passes backwards through the rotor system. The 0 enters 

the left-hand rotor, passes backwards through it, and exits as M. Then M enters the 
middle rotor, passes backwards through it, and exits as V. Next V enters the right-hand 
rotor, passes backwards through it, and exits as X. 

The X then passes through the plugboard where it is changed to L, and lamp L lights . 
The operator would substitute ciphertext L for plaintext A. 

This is an unduly complicated way to do a single permutation, but the point of 
the process is that the mechanical portion of Enigma allows for the generation of a 
long sequence of different permutations .  Each time that a letter on the keyboard is 
pressed, before enciphering begins, the right-hand rotors turns one letter forward. The 
output side of the right-hand rotor has a notch that causes the middle rotor to turn 
forward. Like the odometer of a car, the middle rotor will turn forward one letter once 
during every 26 turns of the right-hand rotor. Similarly, there is a notch on the output 
side of the middle rotor that causes the left-hand rotor to turn forward one letter once 
during every 26 turns of the middle rotor. The theoretical maximum of 263 = 1 7576 
permutations is not actually achieved by Enigma because the mechanical movement 
of the rotors is such that the middle rotor can "double step"-it can rotate forward on 
two subsequent presses on the keyboard [6] . So, 26 x 25 x 26 = 1 6900 keys can be 
pressed on the keyboard before the rotor system returns to the initial permutation. For 
a given setup of Enigma, 1 6900 substitution ciphers are generated in order; the period 
of Enigma is 1 6900. 

The Po l i sh Mathemati c i ans 

The King hath note of all that they intend, 
By interception, which they dream not of. 

-Henry V, Act II, Scene 1 1 3 

In the 1 930s, in direct contradiction of the Versailles Treaty of 1 9 1 9, Germany was 
rearming and was looking to reclaim its "lost" territories in the east-territories that 
were at that time part of Poland. The nervous Poles followed the German buildup 
by monitoring German radio transmissions . But the Germans had learned from their 
cryptological mistakes of World War I and were using better encryption-they were 
using Enigma. Unfortunately for Poland, "there were few persons adept at cryptology 
in Poland at this time." [14, p. 2] 

To solve the problem of the lack of cryptologists, in 1 929, the Polish government 
selected some mathematics students from Poznan University to participate in a cryp
tology course. Poznan was selected because of its location in an area where students 

3This quote appears at the beginning of "The History of Hut 8,  1 939-1 945" by Patrick Mahon. Mahon served 

in Hut 8 (German Naval cryptanalysis) at Bletchley Park from 1 94 1  until the end of the war; he was director of 

Hut 8 from 1 944 until the end of the war. Alan Turing was the first director of Hut 8. 
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would be German speakers. Why mathematics students were selected i s  not clear, but, 
in a manner that was similar to the later recruiting done by the British for Bletchley 
Park, the Polish codebreakers were recruited by teachers and colleagues.  

Well, one day or one evening, I don' t  remember which, one of the younger math
ematics students came up to me and said that on such-and-such a day, at such
and-such an hour, Professor [Zdzislaw] Krygowski [director of Poznan Univer
sity's  Mathematics Insitute] wanted me to come to the Institute. This student 
had some sort of list, and he would go and tell each of the persons on the list 
about this .  Not everyone was invited, only a certain number [of] selected stu
dents. What the criteria were, I can only guess . . . . I expect it wasn' t  Professor 
Krygowski who selected the students but rather Section II [the Intelligence Sec
tion of the Polish General Staff] that had made the selection. Probably there had 
been correspondence between Section II and Professor Krygowski, and on the 
basis of this correspondence Professor Krygowski had given them a list of all 
the third- and fourth-year students . . .  who were close to graduating, and then 
Section II had by its own methods conducted some kind of selection. In any case, 
not all the students were selected . . . . Marian Rejeweski [14b, p. 229] . 

Among the students who were selected were Jerzy Rozycki, Henryk Zygalski, and 
Marian Rejewski . 

On March l, 1 929, Rejewski (who is pictured on the front cover) received his mas
ter of philosophy in mathematics. Without having completed the cryptology course, 
because of an interest in actuarial mathematics, he went to Gottingen for a period of 
training. He returned to Poznan in October, 1 930, and took a position as a teaching 
assistant. He also began work at the Poznan office of the Polish Cipher Bureau [Biuro 
Szyfrow, BURE-oh SHIF-roof]. 

During the Summer of 1 932, the Poznan office was disbanded and Rejewski, Rozy
cki, and Zygalski (the latter two had just graduated) became employees of the Cipher 
Bureau in Warsaw. 

So begins the story of the Polish mathematicians and their duel with the Enigma 
machine. The most important of these was Rejewski ,  and in what follows we will 
focus on two applications of the theory of permutations to the attack on Enigma
determining the order of the Enigma rotors and determining the wiring of the Enigma 
rotors. 

Sett ing Up En i gma 

When two Enigma machines are set to the same key and their three wheels are 
in the same positions, the electrical connections through their steckerboards and 
scramblers will produce the same thirteen pairings of the twenty-six letters of the 
alphabet. . . . Thus, if pressing letter-key K on one of the machines causes lamp 
P to be lit, then pressing letter-key P on the other machine will cause lamp K to 
be lit. [27, p. 45] 

Two Enigma operators could communicate only if their Enigma machines were set up 
using the same key. Daily keys were provided to the operators in a book, for example, 
for a month at a time. There were several settings which made up the Enigma key. In 
1 932, the following made up the key. 

Plugboard: The key specified which 6 pairs of letters were to be connected on the 
plugboard. For example, CO DI FR HU JW LS. 
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Rotor order: The key specified the order in which the rotors were placed in the rotor 
system (from left to right) . For example, I III II. 

Ring setting: There was a ring around the circumference of each rotor on which the 
letters of alphabet A, B , . . . , Z or the numbers 0 1 , 02, . . .  , 26 were engraved. This ring 
could be rotated around the circumference and then held in place with a pin. The ring 
setting of the key indicated the letter of the alphabet on the ring that corresponded to 
the position of the pin. For example, P K M. The purpose of the ring setting was to set 
the letters on the ring with respect to the internal wiring of the rotor. The permutations 
that were given in Section 3 for each rotor assume that the ring setting for each is A. 
Another effect was to position the turnover notch. The notch was in a fixed position 
on the left side of each rotor. Changing the ring setting changed the position of the 
turnover with respect to the internal wiring of the rotors. 

Groundsetting: This portion of the key specified the position of each rotor at the 
beginning of sending or receiving a transmission. The groundsetting indicated which 
letter on each ring should be visible in the windows above the three rotors, for example, 
N K U. These settings made up the key. 

Figure 3 En igma Rotor Cover c losed with sett ing  at NKU 

The Number of Eni gma Keys 

[If] a man were able to adjust, day and night, a new key at every minute, it would 
take him 4000 years to try all those possibilities through on[ e] after another. 

Mid- 1 920s Enigma sales brochure reprinted in the 
July 2001 Cryptologia. See [28, p. 252] . 

The security of Enigma depends on its having a large key space. The size of the 
key space equals the number of possible plugboard settings x the number of possible 
rotor orders x the number of possible ring settings x the number of possible ground 
settings. 

The number of possible plugboard settings:  Assume that n plugs are being used. 
There are 

[26 X 25) X [24 X 23) X [22 X 2 1 )  X · · • X [ (26- 2n + 2) X (26- 2n + 1 ) ) 

2n X n! 
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ways to connect n plugs into the plugboard. Here i s  a table which shows the number 
of connections for each of the possible number of plugs. 

n Number of connections n Number of connections 

0 1 7 1 ,305 ,093,289,500 

1 325 8 1 0,767,0 1 9,638,375 

2 44,850 9 53,835 ,098, 1 9 1 ,875 
3 3 ,453 ,450 1 0  1 50,738,274,937,250 
4 1 64,038,875 1 1  205,552, 1 93,096,250 
5 5 ,01 9,5 89,575 1 2  1 02,77 6,096,548, 1 25 
6 1 00,39 1 ,79 1 ,500 1 3  7,905,853,580,625 

When the Poles began to attack Enigma, six plugs were in use. So, there were 
1 00,39 1 ,79 1 ,500 ways to connect the six plugs into the plugboard. Later the Germans 
used ten plugs. 

The number of possible rotor orders : There are six ways to arrange the three rotors 
in order in the rotor system. 

The number of possible ring settings :  Only the positions of the notches on the right
hand and middle rotors contributed to the cryptographic security of Enigma. So, we 
will say that there are 262 = 676 possible ring settings .  

The number of possible groundsettings:  There are 263 = 17576 choices of the let
ters to appear in the windows. 

So, effectively, the number of possible keys was 

100, 39 1 , 79 1 , 500 X 6 X 676 X 1 7576 = 7 , 1 56 ,755 , 732, 750, 624, 000 

which would seem to be secure enough. 

Enigma Ci phers 

. . .  we shall see that cryptography is more than a subject permitting mathemat
ical formulation, for indeed it would not be an exaggeration to state that abstract 
cryptography is identical with abstract mathematics. 

A. A. Albert [1 ,  p. 903] 

There are 26! = 403 ,29 1 ,46 1 , 1 26,605 ,635 ,584,000,000 simple substitution cipher per
mutations, but there are many fewer possible Enigma substitution cipher permutations. 
Consider the diagram (Figure 4) "Enigma's functional circuit" that is based upon a fig
ure in [14e, p. 274] and uses Rejewski 's  notation. S represents the plugboard (Sleeker
brett); N represents the right-hand, or fast, rotor; M represents the middle rotor; L 
represents the left-hand, or slow, rotor; and R represents the reflector. 

------ Rot1ors � 

I R 0,-----,L D M D.r---=--N D s k({:y::::: 
I I I I Reflector Slow Rotor Fast Rotor Plugboard 

Figure 4 En igma's fu nct ional c i rcu i t  
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Think of S, N, M, L, and R as permutations.  There is one permutation missing from 
Enigma's functional circuit. There should be a permutation P: N +-- S corresponding to 
the motion of the fast rotor which moves forward one letter every time a key is pressed. 
P = ( abcdefghij klmnopqrstuvwxyz) . Rejewski' s  attack on Enigma uses only 
the first six ciphertext letters; so, he assumes that the middle and left-hand rotor do not 
move, but if they do move, his method will not work. Because the middle rotor turns 
only once in every 26 turns of the fast rotor, it is reasonable to assume that the middle 
rotor and the left-hand rotor do not move during the first six encryptions. For the first 
enciphered letter, the permutation is 

Rejewski composes his permutations from left to right, and we will follow his notation. 
For the second enciphered letter, the permutation is 

SP2NMLRL-1 M-1N-1 P-2 S-1 = (SP2NML)R(SP2NML)-1 • 

Whether the middle and left-hand rotors move or not, an Enigma permutation is 
always a conjugate of the reflector. So, an Enigma permutation is always a product of 
13 disjoint transpositions. There are no more than 

such permutations, many fewer than the 26! possible simple substitution permutations. 
The fact that every Enigma permutation is a product of 13 disjoint transpositions 

is what permits Enigma to encipher and decipher in the same mode. Every Enigma 
permutation is self-reciprocal. 

But, being self-reciprocal can also be a weakness.  The reflector permutation guar
antees that every Enigma permutation is self-reciprocal, but it also guarantees that no 
letter can be enciphered as itself. The latter was useful information for British cryptan
alysts. The cryptanalysts who attacked Enigma would know, for example, that cipher
text T did not correspond to plaintext t .  The same rule usually applies to cryptograms 
that appear in newspapers (so-called "aristocrats")--no letter ever substitutes for it
self. With such a rule, we would know, for example, that the trigraph JFE could not 
represent plaintext the. 

The Entry Permutation 

Q w E R T z u I 0 
A s D F G H J K 

p y X c v B N M L 

The Enigma Keyboard4 

There is another permutation that was not considered in the "Enigma functional 
circuit"-the entry permutation. For the original , commercial Enigma, the entry per
mutation corresponded to the order of the keys on the Enigma keyboard q --+ A, 

w --+ B, e --+ C, . . .  : 

Output from Plugboard: 
Entry into Rotors: 

abcdefghij klmnopqrstuvwxyz 
JWULCMNOHPQZYXIRADKEGVBTSF. 

4The arrangement of the keys on an Enigma keyboard differs slightly from the arrangement on a keyboard 

today. 
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In the process of solving for the wirings of the rotors, Rejewski assumed that the 
entry permutation-the permutation from the plugboard into the right-hand rotor
was the same as for the commercial Enigma, but permutations that should have been 
similar were not. 

. . .  it finally occurred to me [Marian Rejewski] that the cause of my failure may 
have been merely a mistaken assumption as to the connections of the entry drum. 
[14d, p. 257] 

Dillwyn ("Dilly") Knox, a British code breaker who was also attacking Enigma, was 
also stumped by the entry permutation. 

I [Marian Rejewski] have the fullest grounds to believe that the British cryptol
ogists were unable to overcome the difficulties caused by the connections in the 
entry drum. When the meeting of Polish, French, and British cipher bureau rep
resentatives took place in Poland in July 1 939, the first question that the British 
cryptologist Dillwyn Knox asked was : What are the connections in the entry 
drum? Knox's  niece, Penelope Fitzgerald states in her book The Knox Brothers, 
published in 1 978,  that Knox was furious when he learned how simple it was. 

What . . .  were the connections in the entry drum? It turned out later that 
they can be found by deduction, but in December 1 932, or perhaps in the first 
days of 1 933 ,  I obtained those connections by guessing. I assumed that, since 
the keyboard keys were not connected with the successive contacts in the entry 
drum in the order of the letters on the keyboard, then maybe they were connected 
in alphabetical order; that is, the permutation caused by the entry drum was an 
identity and need not be taken into account at all .  The hypothesis turned out to 
be correct. [14d, pp. 257 & 258] 

The permutation from the plugboard to the rotor system was: 

Output from Plugboard: 
Entry into Rotors : 

abcdefghij klmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ. 

Peter Twinn was one of the first mathematicians recruited to Bletchley Park. Twinn 
was working with Knox when the Poles revealed the secret of the wiring from the 
keyboard to the entry drum. In The Telegraph [November 17 ,  2004] obituary of Twinn, 
he is quoted as saying: 

I know in retrospect it sounds daft. It was such an obvious thing to do. Rather a 
silly thing, that nobody, not Dilly Knox, not Alan Turing, ever thought it worth
while trying. 

Sometimes it is good to guess. 

Rotor Order and Groundsett ing 

The double encipherment of each text setting . . . was a gross error. It enabled us 
to attack the million-odd combinations of wheel order and ring settings without 
bickering about the vast number of steckerboard cross-connections in which the 
German experts had placed their trust . . . . 

Gordon Welchman [27, p. 1 64] 
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The quote refers to techniques used by the codebreakers at Bletchley Park, but it also 
applies to the power of Rejewski 's  methods. Rejewski was able to discover patterns 
in the Enigma messages and apply the theory of permutations to defeat the plugboard 
and determine the rotor order and groundsetting. 

Recall that the effective number of Enigma keys is 

1 00, 39 1 , 79 1 , 500 X 6 X 676 X 1 7576 = 7, 1 :56, 755 , 732, 750, 624, 000 

where 1 00,39 1 ,79 1 ,500 corresponds to the number of possible connections of the plug
board. The product 6 x 1 7576 = 1 05 , 456 corresponds to the number of possible rotor 
orders and groundsettings. (We will, as Rejewski did at this point, ignore the 262 = 676 
ring settings. Recall that the ring settings set the position of the turnovers [and we are 
assuming that turnover did not occur] , and the ringsettings set the relation between 
the letters on the circumferences of the wheels with respect to the internal wiring [and 
Rejewski had other methods to determine that relationship] .)  Rejewski was able to re
duce the large number of keys to the smaller 1 05 ,456, which is not small but is more 
manageable than 7 , 1 56,755 ,732,750,634,000. 

Recall that Enigma was designed to generate a long sequence of simple substitution 
ciphers. The goal was to defeat frequency analysis by effectively using a different 
permutation to encipher each plaintext letter of a message. That is a good idea. But, 
there is still a problem, and the problem is called "depth." Say that every Enigma 
operator sets up his machine according to the instructions and begins every message 
with the same groundsetting-the same letters appearing in the windows on top of the 
Enigma. Permutation P1 will encipher the first letter of every message, P2 will encipher 
the second letter of every message, . . .  , P50 will encipher the fiftieth letter of every 
message, . . . .  This would happen for every message enciphered by every operator. If 
it were possible to intercept a large number of messages, say 1 00, then the first letter 
of each message would have been enciphered with P 1• If we stripped off the first letter 
of each message we would have 1 00 ciphertext letters each enciphered with the same 
simple substitution cipher. We could apply frequency analysis (perhaps, modified for 
this letter to use frequencies of initial letters) to this collection and have a chance of 
determining P1 • And, we could proceed similarly for the second letter of each message, 
the third letter of each message, etc . This is called depth. Although there might not be 
repetition of ciphers within a message, there is repetition within the collection of 1 00 
messages . 

Prior to World War I, most cryptanalysis was done by lone cryptanalysts working in 
"Black Chambers" attacking individual ciphertext messages. The use of radio in World 
War I changed the nature of cryptanalysis. Suddenly there were hundreds or thousands 
of messages that could be attacked by teams of cryptanalysts. 

German Enigma procedures were designed to defeat the problem of depth. At the 
time that the Poles first encountered Enigma, Enigma procedures required that each 
Enigma message be enciphered using a different setting of the rotors-different letters 
appearing in the windows on top of the machine. It was left to each operator to deter
mine the three-letter message setting. If each message were enciphered with a different 
message setting, depth would not occur. But, how would the message setting be sent 
from the sender to the receiver? How would the key be distributed? The solution that 
the Germans decided upon was to use Enigma to encipher the message setting-the 
three-letter message setting was enciphered using the groundsetting. Because radio 
transmission was subject to garbling, the operators sent the message setting twice. So, 
preceding each ciphertext message were six letters that were two copies of the message 
setting enciphered with the first six permutations beginning with the groundsetting. 
Rejewski calls these first six permutations A, B, C, D, E, and F. 



258 MATH EMATICS MAGAZ I N E  

For example, say w e  have decided our message setting will b e  NKU. After setting up 
Enigma according to the instructions given in the key, we first encipher nkunku. Let 
us assume that these letters encipher to JHNQBG. These six letters would be sent in the 
preamble to the ciphertext. When the receiving operator received the transmission, he 
would set his machine according to the instructions given in the key. Beginning with 
the groundsetting, he would press the keys JHNQBG. The lamps nkunku should light. 
The operator would then set his rotors to NKU, and enter the ciphertext; the plaintext 
message should appear. 

It was in these enciphered double message settings that Rejewski discovered a pat
tern. 

Rejewski would not have known the message setting NKU, but he would have known 
that the first letter, say ? , of the message setting was changed to J by permutation A 
and changed to Q by permutation D. A: ? --+ J and D : ? --+ Q . Because Enigma 
ciphers are self-reciprocal, we know that AD: J --+ ? --+ Q. 

The composition AD changes J to Q. Similarly, BE changes H to B, and CF changes 
N to G. 

Now what remains is to collect enough ciphertext messages. 

If we have a sufficient number of messages (about eighty) for a given day, then, in 
general, all the letters of the alphabet will occur in all six places at the openings 
of the messages. Marian Rejewski [14e, p. 274] . Cf. [14d, p. 234] . 

Here is a list of 65 enciphered double message settings AUQ AMN, . . .  , ZSJ YWG 

taken from [2, p. 390] . 

AUQ AMN INO JHU PVJ FEG SJM SPO WTM RAO 

BNH eHL JWF Mie QGA LYB SJM SPO WTM RAO 

BeT eGJ JWF Mie QGA LYB SJM SPO WTM RAO 

eiK BZT KHB XJV RJL WPX SUG SMF WKI RKK 

OOB VOV KHB XJV RJL WPX SUG SMF XRS GNM 

EJP IPS LOR HOE RJL WPX TMN EBY XRS GNM 

FBR KLE LOR HOE RJL WPX TMN EBY XOI GUK 

GPB ZSV MAW UXP RFe WQQ TAA EXB XYW GeP 

HNO THO MAW UXP svx sew USE NWH YPe OSQ 

HNO THO NXO QTU SYX sew VII PZK YPe OSQ 

HXV TTI NXO QTU SYX sew VII PZK ZZY YRA 

IKG JKF NLU QFZ SYX sew VQZ PVR ZEF YDe 

IKG JKF OBU OLZ SYZ sew VQZ PVR ZSJ YWG 

Consider the first and fourth letters of each indicator. We can notice that the com-
position cipher AD replaces A by A, B by e, e by B, 0 by V, E by I, F by K, G by Z, etc . 
The composition cipher AD is 

abcdefghij klmnopqrstuvwxyz 
AeBVIKZTJMXHUQOFLWSENPRGOY. 

In terms of disjoint cycles, 

AD = (a) (bc) (dvpfkxgzyo) (eijmunqlht) (rw) (s), 

and the lengths of the cycles are 1 0  1 0  2 2 1 1 .  
Similarly, 

BE = (axt) (blfqveoum) (cgy) (d) (hj pswizrn) (k), 
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and the lengths of the cycles are 9 9 3 3 1 1 .  

CF = (abvikt j gf cqny) (duzrehlxwpsmo), 

and the cycles are 13 1 3 .  
Rejewski saw that the disjoint cycles assume a very characteristic form, "generally 

different for each day [i .e. ,  for each groundsetting] . . . . " [14e, p. 274] Furthermore, 
Rejewski realized that the cycle structure is not affected by the plugboard. For ex
ample, consider 

A =  SPNMLRL -IM-1 N-1 P-1 S-1 and D = SP4NMLRL -IM-1 N-1 P-4S-1 . 

AD = (SPNMLRL -1 M-1 N-1 P-1 S-1 ) (SP4NMLRL -1 M-1 N-1 P-4S-1 ) 
= S (PNMLRL -1 M-1 N-1 P-1 ) s-1 S (p4NMLRL -1 M-1 N-1 P-4) s-1 

= SP1 P4S-1 

where P1 = PNMLRL -1 M-1 N-1 P-1 and P4 = p4NMLRL -1 M-1 N-1 P-4 are each de
termined only by the rotor order and groundsetting. Because of the theorem from el
ementary permutation theory that the disjoint cycle structure of a permutation and a 
conjugate of the permutation are the same, the disjoint cycle structure of AD is the 
same as it would be if there were no plugboard; the effect of the plugboard has been 
nullified ! 

Similarly, the disjoint cycle structure of BE and CF is not affected by the plug
board. Rejewski can determine the rotor order and ground setting without considering 
the 1 00,39 1 ,79 1 ,500 possible plugboard connections.  Momentarily, he also ignored 
the 676 ring settings, and he is, therefore, left with "only" the possible 6 x 1 7576 = 
1 05 , 456 rotor orders and groundsettings. 

Rejewski assumed that the middle (and left-hand) rotor did not tum during these 
six permutations. Because the middle rotor turned only once during 26 turns of the 
right-hand rotor, this was a reasonable assumption. If a turnover did occur, his method 
would not work. 

For each of the 1 05 ,456 settings, the Poles determined the characteristic disjoint 
cycles . To do this they devised a machine called a cyclometer. (See Figure 6, p. 26 1 .) 

The cyclometer consisted of two sets of Enigma rotors. One of the six rotor orders 
(e.g . ,  I III II) was selected and both sets of Enigma rotors were arranged in that order. 
Then the first set of rotors was set to a groundsetting (e.g . ,  NKU), and the second set of 
rotors was stepped three positions beyond the groundsetting (NKX). So, the rotors were 
set up as if they were permutations A and D. Again, it was assumed that the middle 
rotor did not tum during the six indicator permutations. 

A charge was applied to one of the letters, say A. The charge passed through the first 
rotor system and the output of the first rotor system passed through the corresponding 
lamp, say N. Then N entered the second rotor system and the output of the second ro
tor system, say J, passed through the corresponding lamp and entered the first rotor 
system. This process continues until the charge returns to A. The diagram5 shows the 
situation when ( aj qe )  is a cycle of the permutation created by the cyclometer. Be
cause that permutation is conjugate to AD, AD also contains a 4-cycle. Notice that 
applying current to any of A, J, Q, orE would result in the same cycle. Also notice 
that this 4-cycle results in the lighting of eight lamps; G, N, H, and S also light and 
correspond to another 4-cycle of the permutation AD. If a charge were applied to G, N, 

H, or S, the same lamps would light. 

5This diagram is based upon an example and diagram in [4] 
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Figure 5 Cyclometer 

The cyclometer is equipped with a rheostat so that the amount of current in the 
circuit can be varied according to the number of lamps that are lit. (In case many lamps 
are lit, the current can be increased to strengthen the light coming from the lamps; if 
few lamps are lit, the lower current would be less likely to bum out the filaments.) 

The eight lamps that are lit told the Poles that AD contained two 4-cycles. 
Then a charge was applied to a letter other than A, J, Q, E, G, N, H andS; and another 

pair of disjoint cycles was determined. This process was continued until the lengths of 
all of the disjoint cycles of AD were known. 

Then both rotors were moved forward one position-to NKV on the first rotor and 
NKY on the second rotor. The permutation that the cyclometer now creates is conjugate 
to BE, and the lengths of the disjoint cycles of BE are determined. Then each rotor is 
advanced forward one more position to create a permutation conjugate to CF, and the 
lengths of the disjoint cycles of CF are determined. 

The Poles catalogued the lengths of the disjoint cycles to all 6 x 17576 = 105, 456 
possible rotor orders and groundsettings. These lists of the lengths of disjoint cycles 
were called the characteristics of the permutation. Apparently no copies of their cata
logue still exist; so, it is not known how the Polish mathematicians ordered the char
acteristics. 

The mapping from rotor orders and groundsettings to characteristics is not one-to
one. Several rotor orders and groundsettings can result in the same characteristic. 

Rejewski describes the use of the cyclometer: 

One had to note on a card the position of the drums and the number of bulbs that 
were lit, and to order the cards themselves in a specified way, for example by the 
lengths of the cycles. 

This job took a long time, over a year, since we carried it out along with 
our normal work at reconstructing daily keys using the grille [another method of 
cryptanalysis used by the Poles]. Once all six card catalogues [one for each of the 
six possible orders of the rotors] were ready, though, obtaining a daily key was 
usually a matter of ten to twenty minutes. The card told the drum positions [the 
letters appearing in the window on the top of the Enigma], the box from which 
the card had been taken told the drum sequence [the ordering of the rotors], and 
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to switch A battery from rotor systems 
and lamps 

l 
• 0 0 0 • 0 • • 0 
� I I I I I I I I 

A B c D E F G H 

• 0 0 0 • 0 0 • 
I I I I I I I I 
J K L M N 0 p Q 

0 • 0 0 0 0 0 0 0 
I I I I I I I I I 
R s T u v w X y z 

from switch i 
A

- 0 A 
E - ® E )f 
G -- @ G 

I H -- ® H 
J -- Q) J 
N - @ N r .... --
a - @ a 
s- @ s 

Rotor System 1 
Lamps Rotor System 2 

Figure 6 Cyclometer d i agram 

the permutation S [the permutation resulting from the plugboard] was obtained 
by comparing the letters of the cycles of permutations AD, BE, CF, which were 
obtained by tapping on the machine's keyboard. [14d, pp. 263 & 264] 

How far from being one-to-one is the mapping from rotor orders and groundset
tings to characteristics? Carter conducted a modem reconstruction of a portion of a 
catalogue (see [4, p. lOf]); he used one rotor order and reflector B ,  which was not the 
reflector in use when the Poles were assembling their catalogue.6 Carter comments: 

It now seems apparent that the use of the catalogue to determine the daily start
ing positions, from the composite cycle pattern could not have been an entirely 
straightforward procedure. In bad cases, the number of possibilities given by the 
catalogue would have been daunting and, if attempted, would have required the 
subsequent checking of large numbers of possible alternative starting positions. 
For the majority of patterns however, the starting positions would have been 

6The wiring of reflector A had not yet been rediscovered when Carter constructed his catalogue. The wiring 

was reconstructed and published in 2000. 
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found immediately from the catalogue, or at most after checking on only a few 
alternatives [4, p. 1 1 ] .  

Kuhl [16] considered all rotor orders and groundsettings and used reflector A ,  which 
was the reflector in use when the Poles were assembling their catalogue. 

Soon after the Poles completed the catalogue there was a change in Enigma. 

Unfortunately, on 2 November 1 937, when the card catalogue was ready, the Ger
mans exchanged the reversing drum [reflector] that they had been using, which 
they designated by the letter A, for another drum, a B drum, and consequently, 
we had to do the whole job over again, after first reconstructing the connections 
in drum B, of course. Marian Rejewski [14d, p. 264] 

Rej ewsk i 's Theorems 

Nonetheless, the Polish mathematicians at B.S. -4 [Biuro Szyfr6w-4, the German 
cipher office]-thanks to the cycle principle discovered by Marian Rejewski, . . .  
were able to quickly distinguish total chaos from the merely ostensible chaos that 
resulted when initially ordered impulses flowed through the machine 's innards. 
[14, pp. 42 and 43] 

In addition to the theorem that conjugation preserves disjoint cycle structure, Rejewski 
in his two papers [14d] and [14e] explicitly states four theorems and uses another. 

THEOREM 1 .  (THEOREM ON THE PRODUCTS OF TRANSPOSITIONS) If two per
mutations of the same degree consist solely of disjoint transpositions, then their prod
uct will consist of disjoint cycles of the same length in even numbers. 

He argues its proof as follows : 

X =  (a 1 a2) (a3<4) (asa6) . . .  (a2k-3a2k-2) (a2k-Ia2k) 
and Y = (a2a3 ) (<4as ) (�a7) . . .  (a2k-2a2k-J ) (a2kaJ ) ,  
then XY = (a1 a3a5 . . .  a2k-3a2k-I) (a2ka2k-2 . . .  a6<4a2) .  

"If, in this manner, we have not exhausted all the letters in the permutation, we continue 
our procedure until we have done so." [14e, p. 278] 

Composing permutations is a routine activity in abstract algebra courses, but what 
Rejewski needed to do was factor the permutations AD, BE, and CF. 

THEOREM 2 .  (CONVERSE TO THE THEOREM ON THE PRODUCT OF TRANSPO
SITIONS) If a permutation of even-numbered degree includes cycles of the same length 
in even numbers, then this permutation may be regarded as a product of two permuta
tions, each consisting solely of disjoint transpositions. 

Recall that each of AD, BE, and CF satisfy the conditions of this theorem. Its proof 
is immediate from what was noted above. 

Given XY = (a 1 a3as . . .  a2k-3a2k-J ) (a2ka2k-2 . . .  a6a4a2) ,  
then w e  can write X =  (a1 a2) (a3a4) (asa6) . . .  (a2k-3a2k-2) (a2k-Ia2k) 
and Y = (a2a3 ) (<4as ) (�a7) . . .  (a2k-2a2k-J ) (a2kaJ ) .  

Rejewski notes two other results that follow from the proof of his Theorem on the 
Product of Transpositions: 
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THEOREM 3 .  Letters entering into one and the same transposition of permutation 
X or Y, enter always into two different cycles of the permutation XY. 

and 

THEOREM 4 .  If two letters found in two different cycles of the same length of the 
permutation XY belong to the same transposition, then the letters adjacent to them 
(one to the right, the other to the left) also belong to the same transposition. 

Lawrence [20] proves a generalization of Rejewski 's  factoring method. 
Rejewski also notes one more fact about conjugation. Rejewski does not call this a 

theorem, but we will here. Say, we consider a conjugation of the permutation H. 

THEOREM 5. /f H(i) = j; i. e. , H = ( . . .  i j . . .  ) ;  then T-1 HT = ( . . .  T(i)T(j) . . .  ) .  
Notice that this implies that H = ( . . .  i j . . . ) and T-1 HT = ( . . .  T(i) T(j)  . . .  ) have the 
same disjoint cycle decomposition. 

For a proof, Rejewski notes that T(i) (T-1 HT) = i (HT) = H(i)T = T(j) . 
In particular, we note that this means that the entries of the permutations can be 

ordered so that 

j . . . . . .  ) 
T(i) T(j) . . .  ) 

which describes the permutation T in two-row notation. 
These theorems are used by Rejewski to determine the wiring of the right-hand 

(fast) rotor using the disjoint cycle description of AD, BE, and CF. 

F ind i ng the Wi r ing of the R ight- H and Rotor-The Fast Rotor 

Still working in isolation, Rejewski 's next step was to develop a mathematical 
representation of the working Enigma machine. He was hoping that the knowl
edge of permutations A to F would enable him to work out the wiring of the 
wheels. He had reduced the problem to a set of six equations involving three un
known permutations, and he was wondering whether they could be solved, when, 
at just the right moment, he was given four documents from the German traitor 
Asche. 

Gordon Welchman [27, p. 2 1 0] 

Rejewski was also able to use the enciphered double indicators to determine the wiring 
of the right-hand (fast) rotor. This was accomplished by solving systems of equations 
that resulted from the patterns determined by the composed permutations AD, BE, and 
CF. 

To see how Rejewski did this,  we will closely follow his example [ 14e, p. 28 1 f].  
First, recall that Rejewski was able to determine the composed permutations pro

vided that he had enough messages-provided that in the collection of 6-letter indica
tors each letter occurred at least once in each of the first three positions .  Recall that we 
have determined the composed permutations to be: 

AD = ( a) (be ) (dvpfkxgzyo) ( e ij munqlht ) (rw) ( s )  
BE = (axt ) (blfqveoum) ( cgy) (d) (hj pswizrn) (k) 
CF = ( abvikt j gf cqny)  (duzrehlxwpsmo ) . 
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Rejewski wants to factor these permutations into A ,  B ,  C ,  D ,  E ,  and F. His descrip
tion of what he did is terse:  

We assume that thanks to the theorem on the product of permutations, combined 
with a knowledge of encipherer's  habits, we know separately the permutations A 
through F. [14e, p. 282] 

A =  (as ) (br) ( ew) (di ) (ev) (fh) (gn) ( j o ) (kl ) (my) (pt ) (qx) (uz)  
B =  (ay) (bj ) ( et ) (dk) ( e i ) (fn) (gx) (hl) (mp) ( ow) (qr) ( su) (vz)  
C =  (ax) (bl) ( em) (dg) (ei ) ( fo ) (hv) ( j u) (kr) (np) (qs ) (tz) (wy) 
D =  ( as ) (bw) ( er) (dj ) (ep) (ft ) (gq) (hk) ( iv) (lx) (mo ) (nz ) (uy) 
E =  ( ae ) (bp) (dk) (ez) (fh) (gt ) ( i o ) ( j l ) (ms ) (nq) (rv) (uw) (xy) 
F =  ( aw) (bx) (eo ) (df ) (ek) (gu) (hi ) ( j z ) (lv) (mq) (ns ) (py) (rt ) .  

It is easy to see that the factors do not violate any of the theorems, but how did 
Rejewski factor them? 

Let us consider factoring AD = (a) (be ) (dvpfkxgzyo )  (eijmunqlht ) (rw) ( s ) .  
First, consider the two 1 -cycles . From Theorem 2, if (a1 ) (a2) in XY, (a1 a2) appears 

in X and (a2a1 ) appears in Y. 
(a) ( s ) appears in AD; so, (as ) appears in both A and D. 
Next, consider the two 2-cycles .  From the Theorem 2, if (a1 a3 ) (l4a2) appears in XY, 

then (a1 a2 ) (a3l4) appears in X and (a2a3 ) (lL(a1 ) appears in Y. 
AD contains two transpositions, and there are two possible orders of the elements 

within them: (be)  (rw) or (be ) (wr) . [Although the order of the elements is not 
important to writing the permutation as a product of disjoint cycles, it is important to 
the factoring. ]  

Therefore, either (br) ( ew) appears in  A and (re )  (wb) appears in  D, or  (bw) ( er)  
appears in  A and (we)  (rb)  appears in  D.  There are two possibilities .  

Finally, consider the two 1 0-cycles. 
From Theorem 2, if (a, a3a5 . . .  a2k-3a2k- I )  (a2ka2k-Z ·  . .  �lL(a2) appears in XY, then 

(a, az) (a3a4) (as�) . . .  (a2k-3a2k-2) (a2k- 1 a2k) appears in X and 
(aza3 ) (lL!as ) (a6a7) . . .  (a2k-2a2k- I )  (a2kaJ ) appears in Y. 

For (dvpfkxgzyo )  (eijmunqlht ) , there are ten possible orders : 

Order number 1 :  
AD = (dvpfkxgzyo )  (eijmunqlht ) 
A = (dt ) (hv) (pl )  (fq) (kn) (xu) (gm) (zj ) (yi ) (oe )  
D = (tv) (hp)  (lf )  (qk) (nx) (ug) (mz) ( j y) ( io )  ( ed) 

Order number 3 :  

AD = (dvpfkxgzyo )  ( j munqlhtei ) 
A = (di ) (ve) (pt )  (fh) (kl) (xq) (gn) (zu) (ym) (oj ) 
D = ( iv) (ep)  (tf ) (hk) (lx)  (qg) (nz)  (uy) (mo ) ( j d) 

Order number 10 :  
AD = (dvpfkxgzyo )  (teijmunqlh) 
A = (dh) (vl) (pq) ( fn)  (ku)  (xm) (gj ) (zr) (ye )  (ot )  
D = (hv) ( lp)  (qf )  (nk) (ux) (mg) ( j z )  ( iy) (eo)  (td) .  

So there are 1 x 2 x 1 0  = 20 possible factorizations of AD. Here Rejewski gets 
some help from the Enigma operators .  
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. . . it is a well-known phenomenon that man, as a being endowed with con
sciousness and memory, cannot imitate chance perfectly, and it is the cryp
tologist's task, among other things, to discover and make proper use of these 
deviations from chance. 

Marian Rejewski [14d, p. 254] 

Just as our selection of NKU for our message setting earlier in this paper was not ran
dom, Enigma operators did not usually choose random 3-letter strings for their mes
sage settings. Often they used initials, patterns in rows or diagonals of the keyboard, 
etc. Rejewski was able to exploit his knowledge of the operators '  habits to reduce the 
number of possible factorizations. Eventually he was able to arrive at the factorizations 

A = (as ) (br) ( cw) (di ) ( ev) (fh) (gn) ( j o )  (kl )  (my)  (pt ) (qx)  (uz )  
B =  (ay) (bj ) ( ct ) (dk) ( e i ) (fn) (gx) (hl ) (mp) ( ow) (qr) ( su) (vz ) 
C = (ax) (bl)  ( em) (dg) ( e i )  ( fo ) (hv) ( j u) (kr) (np)  (qs ) (tz)  (wy)  
D =  (as ) (bw) ( cr) (dj ) (ep) (ft ) (gq) (hk) ( iv) ( lx) (mo ) (nz ) (uy)  
E =  (ac) (bp)  (dk) (ez)  (fh) (gt )  (io)  ( j l )  (ms ) (nq) (rv)  (uw) (xy) 
F = (aw) (bx) ( co )  (df ) (ek) (gu) (hi ) ( j z )  ( lv)  (mq) (ns ) (py)  Crt ) . 

In terms of the individual permutations of the Enigma circuit, we have 

A = SPNP- 1MLRL - 1M-1PN- 1P- 1 S- 1  
B = sp2NP-2MLRL - 1M- 1P2N- 1 P-2S- 1  
C = Sp3NP-3MLRL - 1M- 1P3N- 1 P-3S- 1 
D = sp4NP-4MLRL - 1M-1 p4N- 1 P-4S- 1 
E = SP5NP-5MLRL - 1M- 1P5N- 1 P-5S- 1 
F = sp6NP-6MLRL - 1M- 1P6N- 1P-6S- 1  

where P i s  the entry permutation and 

P = (abcdefghij klmnopqrstuvwxyz )  
P2 = (acegikmoqsuwy) (bdfhj lnprtvxz) 
p3 = (adgj mpsvybehknqtwzcfilorux) 
p4 = (ae imquycgkosw) (bfj nrzvdhlptx) 
Etc. 

Rejewski substitutes Q = MLRL - 1M- 1 . This permutation is a factor of each of A, 
B,  C, D, E, and F because Rejewski assumed that no turnover occurred during the 
double encipherment of the message setting; so, the middle and left-hand rotor are 
assumed to be fixed. 

A = SPNP- 1QPN- 1P-1 S- 1  
B = sp2Np-2QP2N- 1 p-zs- 1  
C = SP3NP-3QP3N- 1 P-3S- 1 
D = sp4NP-4Qp4N- 1 p-4s- 1 
E = SP5NP-5QP5N- 1 P-5S- 1 
F = SP6NP-6QP6N- 1p-6s- 1  

The unknowns are Q,  S, N ,  and their inverses. Rejewski wants to determine N. 
As it turned out, the Polish Cipher Bureau had information that made S, the plug

board permutation, known. 
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. . .  I had a set of  six equations with three unknowns-S, N ,  and Q .  And just as 
I was wondering how to solve this set, quite unexpectedly on 9 December 1 932, 
at just the right moment, I was given a photocopy of two tables of daily keys for 
September and October 1 932. 

Now, the situation had changed radically. Since the key tables also contained 
the daily changes in the commutator connections, I could now regard S as known 
and transfer it . . . to the left side of the set . . .  

Marian Rejewski [14d, p. 256] 

The French had purchased the information (along with other information about 
Enigma) from the German traitor Hans Thilo Schmidt (code name Asche) . In 1 932, 
German Enigma procedures called for changing the order of the three rotors once per 
quarter. Because September is in one quarter of the year and October is in the next, 
the information from Schmidt provided the plugboard connections when two different 
rotors were in the right-hand rotor location. 

Kahn [13, p. 66] claims that " . . . the Poles had a stroke of luck. The Germans 
changed the rotors every three months, or quarter of a year. Fortunately, the keys that 
Schmidt had supplied straddled two different quarters." And, Budiansky [3, p. 1 02] 
echoes and strengthens Kahn's statement: " . . .  if it were not for the changes in the 
rotor order, Rejewski would have hit another impasse . . . . " Lawrence [18] suggests 
that even if Rejewski only had received data for one rotor order he still would have been 
able to determine the Enigma wiring. In [19] , Lawrence considers whether Rejewski 
needed the information obtained from Asche to solve his six equations and obtain 
the wiring of the rotors . But, through Asche, information about S was available to 
Rejewski for two different quarters, and he did use it to determine the wiring of two 
Enigma rotors. 

Also known, thanks to materials obtained by intelligence, are the plug connec
tions S for the given day: 

S =  (ap) (bl) ( cz) (fh) ( j k) (qu) . 

Marian Rejewski [14e, p. 282] 

So, the remaining unknowns are Q and N. 
Rejewski transfers S to the left side of each of the six equations. 

s- 1 AS = PNP- 1 QPN- 1P- 1 
s- I BS = p2Np-2QP2N- 1p-2 
s- I cS = p3Np-3QP3N- 1p-3 
s- l os = p4NP-4Qp4N- 1 p-4 
s- I ES = p5Np-5QP5N- 1p-s 
s- I ps = p6Np-6QP6N- 1 p-6 

Then, because he also knows P, he transfers it to the other side of each equation. 

u = p- 1 s- 1ASP = NP- 1QPN- 1 
v = p-zs- 1BSP2 = NP-2QP2N- 1 
w = p-3s- 1csp3 = NP-3QP3N- 1 
X = p-4s- 1nsp4 = NP-4Qp4N- 1 
y = p-ss- 1 ESP5 = NP-5QP5N- 1 
z = p-6s- 1psp6 = NP-6QP6N-1 
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Actually, Rejewski needs only the first four of these. He substitutes for S, the various 
powers of P, and A, B, C, and D and determines U, V, W, and X. 

U =  (ax) (bu) ( ck) (dr) (ej ) (fw) (gi ) (lp) (ms ) (nz ) (oh) (qt ) (vy) 
V = (ar) (bv) (co ) (dh) (fl ) (gk) ( iz) ( jp ) (mn) (qy) ( su) (tw) (xe)  
W =  (as ) (bz ) ( cp) (dq) (eo) (fw) (gj ) (hl ) ( iy) (kr) (mu) (nt ) (vx) 
X =  (ap) (bf ) ( cu) (dv) ( e i ) (gr) (ho ) ( j n) (ky) (lx) (mz) (qs ) (tw) 

Next, Rejewski forms products . 

UV = (NP- 1 QPN-1 ) (NP-2QP2N- 1 ) = NP- 1 (QP- 1 QP)PN- 1 
VW = NP-2 (QP- 1 QP)P2N- 1 
WX = NP-3 (QP- 1 QP)P3N- 1 

Rejewski notes that (because each is a conjugate of QP- 1 QP ) "the products have 
the same configuration of cycles, which is as it should be." [14e, p. 282] 

UV = (aepftybsnikod) (rhcgzmuvqwlj x) 
VW = (akj cevzydlwnu) ( smtfhqibxopgr) 
WX = (aqvloikgnwbmc ) (puzftj ryehxds ) 

He then eliminates the common expression QP- 1 QP between UV and VW 

VW = NP-2 (QP- 1 QP)P2N- 1 

= NP- 1 N- 1 (NP- 1 (QP- 1 QP)PN- 1 )NPN- 1 

= NP- 1 N- 1 (UV)NPN- 1 

= (NPN- 1 ) - 1 (UV) (NPN- 1 ) 

and similarly between VW and WX. 

WX =(NPN- 1 ) - 1 (VW) (NPN- 1 ) 

Because VW = (NPN- 1 )- 1 (UV) (NPN-1 ) ,  Theorem 5 can be used to find several 
possibilities for NPN-1 • Similarly, because WX = (NPN- 1 ) - 1 (VW) (NPN- 1 ) ,  Theo
rem 5 can be used to find possibilities for NPN- 1 • 

We should . . . write VW beneath product UV in every possible way, and like
wise, product WX beneath product VW. Of all these possible ways, one will give 
the same result in both cases. This will be the expression that we need. Writing 
VW beneath UV, and WX beneath VW, in every possible way is rather tedious . 
However, there are various tricks and technical means that make this subscrip
tion unnecessary, but whose description and, especially, justification would take 
us too far afield. It will suffice to say that products UV, VW, and WX should be 
subscribed in the following way: 

UV = (aepftybsnikod) (rhcgzmuvqwlj x)  
VW = (ydlwnuakj cevz)  ( ibxopgrsmtfhq) 
VW = (ydlwnuakj cevz )  ( ibxopgrsmtfhq) 
WX = (uzftj ryehxdsp) ( caqvloikgnwbm) 

For, in both cases, we obtain for NPN-1 the same expression: 

NPN-1 = (ayuri cxqmgovskedzplfwtnj hb) 

Marian Rejewski [14e, pp. 282 & 283] 
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To find N ,  Rejewski uses Theorem 5 again. 

Subscribing beneath permutation NPN-1 permutation P in all possible ways, of 
which there are twenty-six, we will obtain [using Theorem 5] twenty-six variants 
of the permutation N. For example, one variant is [14e, p. 283] : 

NPN- 1 = (ayuri cxqmgovskedzplfwtnj hb) 
p = N- 1 (NPN- 1 )N = ( abcdefghij klmnopqrstuvwxyz)  

For this variant, after the upper row has been placed in  alphabetical order, we obtain: 

_ (abcdefghij klmnopqrstuvwxyz) N - azfpotj yexnsiwkrhdmvclugbq 

The Pol ish Doub l es 

After only a month of continuous and highly concentrated effort, [Rejewski] had 
worked out the electrical connections of the three wheels that were used at that 
time in the German Enigma. He was able to have a replica of the machine con
structed. 

Gordon Welchman [27, p. 1 5] 

By December, 1 932, Rejewski knew the wiring of the Enigma rotors and was able to 
determine the settings based upon the double encipherment of the message indicators. 
By the middle of January, 1 933 ,  the Poles were able to read Enigma messages . 

In 1 938, the situation was aggravated. The Germans changed the encryption pro
cedure on January 1 5 ,  and introduced on December 1 5  a fourth and a fifth rotor, 
which now gave 60 instead of the previous 6 possible rotor orders. 

The Poles had to find out the wiring of the new rotors quickly, and they were 
lucky. Among the traffic they regularly decrypted were signals from the S .D. 
(Sicherheitsdienst) , the intelligence service of the Nazi Party. The S .D. did not 
change their encryption procedure, but introduced the new rotors in December 
1 938 .  These rotors came from time to time into the position of the fast rotor and 
their wiring would be reconstructed the same as previously with the first three 
rotors . [2, p. 395] 

Soon the Poles had several Enigma "doubles" built. 
Fearing that war would begin soon, the Poles met, on July 24 and 25 , 1 939, with 

British and French cryptologists in the B .S . -4 facility in Kabackie Woods outside War
saw. 7 It was at this meeting that the Poles revealed the extent of their abilities to read 
Enigma and told the French and British that each would receive a Polish-made Enigma 
double. 

One of the Polish Enigma doubles is now on display in the Sikorski Polish Museum 
in London. (See Figure 7, p. 269.) The Enigma plugboard is not visible behind the 
lampboard. This is a 3-rotor Enigma, but the machine had five rotors from which the 
three in use were chosen. The two rotors on the right are in storage; the three rotors on 
the left are installed. 

At the beginning of September, 1 939, Poland was attacked by Germany. 
7 A photograph of the site as it now exists may be found in [11] . 



Figure 7 Polish Enigma Double 

What Happened to the Pol ish Mathematicians? 

269 

Mathematicians are often thought of as being rather remote individuals, in
dulging in activities which have little or no relevance to rea/ life. 

Frank Carter [4, p. 4] 

On September 5, 1939, B.S.-4 was told to evacuate Warsaw on a special train. The 
Polish · mathematicians crossed the border into Romania, traveled through Italy, and 
eventually crossed the border into France. On October 20, 1 939, the Polish mathe
maticians, from a site not far from Paris, resumed their attack on the German ciphers. 
On June 22, 1940, French Premier Petain signed an armistice which divided France; on 
June 24 the Poles were flown to North Africa. In Algiers, they took on new identities 
and returned to France to resume signal intelligence in Vichy France. They operated 
from a site near the town of Uzes near the Mediterranean coast. The Poles occasion
ally spent two- or three-month periods at the North African station, and on January 
9, 1942, R6zycki died when the French ship Lamoriciere carrying him and other staff 
back to France from Algeria was sunk. 

Just prior to the German occupation of the free zone of France, Rejewski and Zy
galski fled to the Italian zone, then back to France, and "on the night of 29 January 
1943, . . .  set out with [a] smuggler for the [Spanish] border." [14, p. 150] On the trip, 
the smuggler demanded from them at gunpoint more money for the trip. Upon arriv
ing in neutral (but sympathetic to Germany) Spain, the Poles were arrested. Upon their 
release they made their way to Madrid. 

Near the end of July, they made their way to Portugal and were taken by boat to a 
British naval vessel waiting off the coast. 
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For the remainder of the war, Rejewski and Zygalski worked at a Polish Signals 
Battalion in Boxmoor near London. The British codebreakers at Bletchley Park were 
now routinely breaking Enigma; the Poles worked on German S .S .  and S .D. ciphers . 

Stuart Milner-Barry, who was playing chess for the British team in Argentina when 
war broke out, became a codebreaker and later became director of Hut 6 (German 
Army and Air Force cryptanalysis) ; he speculates about why the Polish codebreakers 
were not invited to Bletchley Park. 

It was always a mystery to me that the Polish contingent was not incorporated at 
Bletchley during the war, where they would no doubt have made an invaluable 
contribution; but in fact they were side-tracked in France and had to be evacuated 
when the Germans overran the whole of the country. I can only assume there 
were security doubts, and I believe the Poles continued to operate their own 
organization, but I feel there must have been a sad waste of resources somewhere. 

Stuart Milner-Barry [9, pp. 92 & 93] 

After the war, Rejewski returned to Poland in November, 1 946. 

. . . for reasons of practical and family nature, it proved difficult for Rejewski 
to find employment as a mathematician at an institution of higher learning, and, 
in the early postwar period, he felt it imprudent to apply for a job in cryptology 
. . . . for 20 years [Rejewski] worked in the administrations of various concerns 
in Bydgoszcz, and in February 1 967 retired [14, p. 224] . 

Rejewski died in 1 980. 
Henryk Zygalski remained in England after the war and taught in London. He died 

in 1 978. 
Bletchley Park is now a museum that honors the work of the British codebreakers. 

Outside the Bletchley Park cottage in which the British codebreakers made their first 
break into Enigma is a tablet that honors the work of the Polish codebreakers. A copy 
of that tablet has been placed on the west wall of the former Ministry of War office in 
Pilsudski Square in Warsaw where the Polish codebreakers worked. 

This plaque commemorates the work of Marian Rejewski, Jerzy Rozycki, and 
Henryk Zygalski, mathematicians of the Polish intelligence service, in first break
ing the Enigma code. Their work greatly assisted the Bletchley Park code break
ers and contributed to the allied victory in World War II. 8 

For further study. Beginning with the publication of The Ultra Secret in 1 974 [29] , 
some information about Enigma has become public . Although other information is 
still classified, there are many websites and papers and books about Enigma. Here are 
some to use for further study. 

There are many Enigma websites; some include virtual Enigma machines. Two sites 
to start with are the official website of Bletchley Park: 

http : //www . blet chleypark . org . uk/ 

and Tony Sale's World War II Codes and Ciphers : 

http : //www . codesandc iphers . org . uk/ 
8The English version of the statement on the tablet honoring the Polish codebreakers at Bletchley Park. 
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The National Security Agency's website: 

http : //www . nsa . gov/history/histo00007 . cfm 

2 7 1  

contains downloadable publications about cryptological history including Enigma. 
Wikipedia is also an excellent reference for cryptological topics. 
There are also many books . The standard reference for cryptological history is The 

Codebreakers by David Kahn [12] . 
When Kahn's book appeared in 1 967, Enigma was unknown to the public. The 

revised and updated book published in 1997 contains some material about Enigma, 
but his Seizing The Enigma: The race to break the German U-boat codes 1939-1943 
[13] , which was published in 1 99 1 ,  is a more complete history of Enigma. 

Simon Singh's The Code Book: The Evolution ofSecrecyfrom Mary, Queen of Scots 
to Quantum Cryptograph [25] has prompted some popular interest in cryptology, but 
should be read or used with some caution (see, for example [21]) .  

Two good readable recent histories of World War II code breaking are Enigma: The 
Battle for the Code by Hugh Sebag-Montefiore [24] and Battle of Wits: The complete 
story of codebreaking in World War 1I by Stephen Budiansky [3] . 

The history of the Polish code breakers is written in Enigma: How the German Ma
chine Cipher Was Broken, and How it was Read by the Allies in World War Two by 
Wladyslaw Kozaczuk (translated by Christopher Kasparek) [14] and also in Enigma: 
How the Poles Broke the Nazi Code [15] . 

The Hut Six Story by Gordon Welchman [27] and Codebreakers: The Inside Story 
of Bletchley Park edited by F.H. Hinsley and Alan Stripp [9] are good starting points 
for understanding the work of the British codebreakers at Bletchley Park. 

Two mathematical papers by Rejewski about the solution of Enigma ( [ 14d] and 
[ 1 4e]) appear as appendices to [ 14] . They are also available on several internet sites.9 
Similar results appear in Rejewski 's paper An Application of the Theory of Permu
tations in Breaking the Enigma [22] . This paper is also available on several internet 
sites. 

Frank Carter, a mathematician who is now a Bletchley Park volunteer, has written 
several papers describing the mathematics used by the World War II cryptanalysts . His 
papers are available as either Bletchley Park Trust reports or on the Bletchley Park 
website. In particular, two of his papers [ 4] and the technical report "The Polish recov
ery of the Enigma Rotor wiring" (which is available on the Bletchley Park website and 
appeared just after this paper was written) discuss the mathematical work of Rejewski .  

A complete coverage of cryptology from a mathematician's viewpoint is contained 
in Decrypted Secrets: Methods and Maxims of Cryptology by F.L. Bauer [2] . It is hoped 
that this paper's gentle introduction would encourage readers to examine Bauer's ex
cellent book. 

Cryptologia is a quarterly journal devoted to all aspects of cryptology. The journal 
began publishing in 1 977, and its back issues contain many articles about the history 
and mathematics of Enigma. Cryptologia is published by the Taylor & Francis Group. 

Mathemat i c i ans D i d  Not Win the War 

Polish penetration into the secrets of the Enigma began in earnest when Rejewski 
realized the application of a simple property of permutations-namely, that if G 
and P are permutations, then the permutation defined by PGP- 1 has the same 
9The paper that is Appendix E also appears in Cryptologia, VI, number I ,  (January 1 989), 1 - 1 8 ;  and in Cipher 

Deavours; David Kahn; Louis Kruh; Gregg Mellen; and Brian Winkel; editors, 1 989, Cryptology: Machines, 

History, & Methods, Artech House, Boston, 1 989, pp. 3 1 0-327. 
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cycle structure as  the permutation G. No doubt practitioners of group theory 
should introduce this property of permutations to students as "the theorem that 
won World War //." Cipher A. Deavours [5, pp. 229 & 232] . 

To paraphrase many others, no theorem won the war. The war was won by those 
who served in the various Allied military services, but the information gleaned from 
Enigma helped the Allies win the war, and the breaking of Enigma began with Polish 
mathematicians who found patterns in Enigma messages. 
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Why R icha rd Caryl Offed H i mself  
or 

One Reason to Take a Cou rse in Probabi l i ty 

A hypochondriac at heart, he thought 
(Though symptom free) he had a dire disease, 
And after fruitless weeks of worry, sought 
Some test to take to set his mind at ease. 

He forthwith found one that would do the trick, 
And accurate (at oh point nine) to tell 
Those having the disease that they were sick, 
And just the same, the well that they were well. 

One crucial point he failed to note was this :  
That of  a hundred like him, only one 
Had the disease, and this slip made him miss 
The implication when the test was done 

And positive ! Therefore, consumed with dread, 
And now convinced his blackest fears were right 
(By faulty logic fatally misled2) ,  
He shattered silence that calm summer night. 

J . D. Memory 
Professor of Physics, Emeritus 
North Carolina State University 
jmemory @ nc.rr.com 

1 "Richard Cory" is a frequently anthologized poem by E. A. Robinson 
2 An example of the False Positive Fallacy: On average, of 1 000 Corys, ten would have the disease, 

yielding nine true positives and one false negative. Of the remaining 990, there would be 99 false positives 

and 89 1 true negatives. The false positives outnumber the true positives by a factor of eleven. So if D 

denotes having the disease and P denotes testing positive, we learn from the poem that Pr( P  I D) = 
0.9, whereas Pr(D 1 P) = 9/ 1 08,  or about 0.083 .  Richard Cory shot himself "that calm summer night," 

because he confused Pr( P  I D) with Pr(D I P ) .  
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Seeing Dots: Visibility of Lattice Points 

j O S H U A  D .  L A I S O N  
W i l lamette University 

Salem, OR 97301 
j la ison®wi l lamette.edu 

M I C H E L L E  S C H I C K  
Kansas State University 

Manhattan, KS 66506-2 602 

Consider a photographer who is commissioned to take publicity pictures of a high 
school marching band while standing near them on the field. He wishes to take the 
smallest number of photographs such that every person is visible and unobstructed in 
at least one of the photographs, so as not to upset any member of the PTA. 

A marching band's traditional formation is a grid pattern, with exactly five feet 
between each student, horizontally and vertically as viewed from above. We abstract 
the problem by representing each member of the band by an integer lattice point, and 
say that she is viewed in the photograph if there is no other student on the line segment 
between her and the photographer, who is required to stand at a lattice point. Notice 
that this  is a simplification, since some lines of sight will pass very close to another 
lattice point without passing through it. We represent the band as an r x s rectangle 
of integer lattice points with corners at ( I ,  1 ) , (r, 1 ) ,  ( 1 ,  s ) ,  and (r, s ) , denoted by 
11r,s • and the photographer's vantage points as a small number of integer lattice points 
outside the band formation, one for each picture. An example of a particular picture is 
shown in FIGURE 1 .  Note that the photographer captures three of the four students in 
this shot. 

Given these criteria, what is the smallest number of pictures the photographer needs 
to take of an r x s marching band? It turns out that this simple question has a not-so
simple answer. Although we provide a number of answers for some small values of r 
and s ,  using the Chinese Remainder Theorem as a key ingredient, much of the work 
on this problem remains open. We will also briefly discuss the analogous problem for 
marching bands in higher-dimensional space. 

( 1 ,2) (2,2) 

( 1 , 1 )  (2, 1 )  

Figure 1 From the poi nt (3 , 1 ) , the photographer can see th ree of the fou r  students i n  
th i s  band, formal ized as the set Ll2 , 2 . 

Formally, two distinct integer lattice points P and Q are mutually visible if there 
are no other integer lattice points on the line segment joining P and Q .  Equiva
lently, P = (a 1 , a2) and Q = (b 1 , b2) are mutually visible if and only if gcd(a1 - b1 , 
a2 - b2) = 1 [10] . So for example, (3 , 5) and ( 1 ,  2) are mutually visible, since 
gcd(3 - 1 , 5 - 2) = 1 .  Recall that for any integer k, gcd(k , 0) = k. So if P and 
Q have the same x-coordinate, then a1 - b1 = 0, and they are mutually visible if and 
only if their y-coordinates differ by 1 .  
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We will use this equivalent criterion more frequently than the definition in our ar
guments. 

Weak lattice po i nt v is ib i l i ty 
As a warm-up question, we ask where the photographer might position himself to take 
a small number of photographs of the band in an empty field, so that every person is 
clearly visible in one of the photographs. Recall that we require the photographer to 
stand at a lattice point. We say that the rectangle of lattice points t::..,,s is weakly visible 
from the point P if no line segment between P and a point in !:::..r,s passes through 
another point in !:::..r.s · It turns out that it takes only a single point to weakly view a 
rectangle of any size. 

THEOREM 1. The set t::..,,s is weakly visible from the point P whose coordinates are 
(rs - s + r, s + 1 ) .  

Proof Consider the set of all lines C between pairs of points i n  t::..,,s .  We claim that 
P is not on any line in C. From this claim, the theorem follows. 

I )  

Figure 2 The point (rs - s + r, s + 1 )  weakly views all of .6.,, 5 • 

The line L connecting the points ( 1, 1) and (r, 2) is the line with the smallest pos
itive slope in C. The line H with equation y = s is the horizontal line with largest 
y-intercept in C. Therefore, no lines in C cross through the region below L and 
above H. But since L contains the point (r s - s + r, s + 2) and H contains the point 
(rs - s + r, s ) ,  P is below L and above H, as illustrated in FIGURE 2. • 

It is interesting to note that the situation only improves in higher dimensions. If A, 
B,  and C are three points in n-dimensional space, and their projections onto the xy
plane are not collinear, then A, B, and C are also not collinear. Therefore if !:::.. is an n
dimensional box of integer lattice points, with x and y dimensions r and s ,  respectively, 
then !:::.. is still weakly visible from the point P = (rs - s + r, s + 1, 0, 0, . . .  , 0) . 

Also note that the point we have found might be quite far from the rectangle or box 
we wish to view, so the people might appear quite small in the photograph. 

OPEN PROBLEM 1. Find the lattice point(s) that weakly view the rectangle t::..,,s 
(or higher-dimensional box !:!..) and are closest to it. 
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Extern a l  l attice po i nt v i s i b i l i ty 

Now that we have answered our question in an empty field, we turn to a more interest
ing question: What if the band is marching down a crowded street? We can represent 
the crowd by adding in the rest of the integer lattice points in the plane. Now to view 
a member of the band, the photographer must have a line of sight that doesn' t  pass 
through any member of the band or of the crowd. Again, we ask how few photographs 
are needed to view every face in the band. Note that this question is not interesting if 
we are allowed to take our photographs from noninteger points, so we restrict ourselves 
to integer points . 

Formally, we say that l::!.,,s is externally visible from the set of integer lattice points 
P� o P2 , . • .  , Pk not in 1:::!.,, 5 ,  if for every point Q in 1:::!.,, 5 ,  Q and Pi are mutually visible 
for some i .  We then define e (r, s) to be the smallest number of points outside l::!.r,s from 
which l::!.r,s is externally visible. We are interested in the exact value of e (r, s ) for all 
positive integers r and s .  

A s  a useful visualization technique, w e  consider a single photograph of an arbitrar
ily large band, with the photographer standing at the point (0, 0) and facing toward the 
first quadrant. FIGURE 3 shows the points that are visible from this position as black 
squares, and the points that are not visible as white squares. To obtain the pattern of 
points visible and invisible to a photographer facing toward the second, fourth, or third 
quadrants, we reflect FIGURE 3 across the y-axis,  across the x-axis, or through the 
origin, respectively. To obtain the pattern of points visible to a photographer facing di
rectly along an axis, we place one additional black square at ( 1 , 0) , ( - 1 , 0) , (0, 1 ) ,  or 
(0, - 1 ) ,  since only the band member closest to the photographer in that row or column 
will be visible. 

To obtain the pattern of points visible and invisible to a photographer standing at 
the point (a , b) , we simply relabel the x-axis starting with a and the y-axis starting 

42 
41 
40 
"' 
"' 

• • • 
•• •  • 

=------....-!·-�-· ·���· i·l : • • • < 
30 
29 
28 
27 
26 • 25 -
23 
22 -
• • • 0 
• 
8 
7 

• • • • 

• •  
"' . . "' 

.. 

• 

I :• 

• •  • 

8 
• • • .. . 

0 ••• ill . 

• •  
-• 

• 
• • • Ill 

• 

--

• 

• • •  
• 

0 1 2 3 4 5 6 7 8 9 1 0  11 1 2  1 3  1 o4  1 5  16 1 7  1 8  1 9  20 21 22 23 24 25 26 27 28 29 30 31 

Figure 3 Latt ice poi nts v i s ib le  from the poi nt (0, 0) appear as b lack squares, and i nv i s i 
b le  poi nts appear as wh ite squares. 
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with b. Thus, we can simulate multiple photographs by overlaying several copies of 
FIGURE 3, copied onto transparency film. Many of our small values of e (r, s) were 
obtained in this way. 

We can now make some general observations about the values of e (r, s ) .  By symme
try, e (r, s) = e(s, r ) .  Seeing �r,s means seeing every subset of �r,s • therefore e (r, s) :::: 
e(t ,  u )  if r :::: t and s :::: u .  The point (0, 0) can view any point of the form ( 1 , k) , which 
means that e ( l ,  s) = 1 for all positive integers s .  

One point i s  not, however, sufficient to view a rectangle even a s  small a s  2 x 2 .  To 
see this ,  let (a , b) be an integer lattice point not in �2,2 • Suppose that a is odd and b 
is even. Then a - 1 and b - 2 are both even, so gcd(a - 1 , b - 2) > 1 .  Hence by our 
criterion, (a , b) and ( 1 , 2) are not mutually visible. In an analogous way, every point 
(a , b) cannot view at least one of the points in �2,2 , so e (2 , 2) > 1 .  The points (0, 0) 
and (0, 1) externally view �2,2 , so e (2 , 2) = 2. We can generalize this idea to larger 
rectangles by use of the Chinese Remainder Theorem. 

THEOREM 2 .  (CHINESE REMAINDER THEOREM) Let m 1 , m2 , • • •  , mk be pair
wise relatively prime positive integers. Then the system of congruences 

has a unique solution modulo m 1m2 • • • mk . 

Detailed introductions to the Chinese Remainder Theorem and modular arithmetic 
appear in most introductory books on number theory [6, 11 ,  12] . 

Herzog and Stewart [9] use this theorem to investigate patterns of visible lattice 
points in larger rectangles. They define a pattern P to be a subset of integer lattice 
points in the plane. They define a particular pattern P to be realizable if P can be 
translated by some vector in 71} such that every point in P is visible from the origin. 
In other words, P is realizable if it can be externally viewed from a single point. 
They define a complete square modulo m to be a set S = { (Xt . Yk) }  of m2 integer 
lattice points in the plane, such that { (xk mod m,  Yk mod m ) }  = { (a ,  b) I 0 :::: a ,  b :::: 
m - 1 } .  For example, the four points ( 1 , 5) ,  (7 , 2) , (8, 3) ,  and (4, 4) form a complete 
square modulo 2, since their remainders modulo 2 are ( 1 , 1 ) ,  ( 1 , 0) , (0, 1 ) ,  and (0, 0) , 
respectively. Note that any integer lattice point (a , b) must be congruent to one of these 
points modulo 2, and hence does not view that point. This idea is at the heart of the 
following theorem. 

THEOREM 3 .  (HERZOG AND STEWART, 1 97 1 )  A given pattern P is realizable if 
and only if P fails to contain a complete square modulo p for every prime p. 

We can see that if P contains a complete square modulo any prime p,  then P cannot 
be externally viewed from a single point, since any candidate point (a , b) must be 
congruent modulo p to one of the points in the pattern, and hence cannot view that 
point. To prove the converse, Herzog and Stewart use the Chinese Remainder Theorem 
to construct an external point (a , b) that views all points in the pattern. This point is 
constructed so that a is not congruent to any of the x-coordinates of points in P modulo 
any prime smaller than the size of the pattern, and analogously for b. 

Using similar techniques, other authors have obtained asymptotic results concern
ing the number of lattice points needed to view a rectangle of lattice points, as the 
rectangle gets large. Abbott defines f(n) to be the smallest number of points in �n ,n 
required to view the rest of �n ,n .  This version of the problem may be thought of as 
internal visibility. Abbott [1]  proves that log nj2 log log n < f(n) < 4 log n for large 
n .  His proof uses the Chinese Remainder Theorem to establish the lower bound, again 
by using a system of congruences to construct the set of viewing points . The upper 
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bound follows, after some algebraic manipulations, from the following classical result 
of analytic number theory [5] . 

THEOREM 4 .  The set of integer lattice points visible from the origin has density 
6jrr2. 

Chen and Cheng [7] define g (n) to be the smallest number of lattice points in the plane, 
internally or externally, required to view l:!.n ,n · Chen and Cheng also base their con
struction on the Chinese Remainder Theorem to prove that g (n) � k log n I log log n ,  
where k approaches rr2 j6. 

However, no previous authors seem to have investigated external visibility alone, 
or more significantly, the exact numbers of points required to view various size rect
angles of lattice points . While informative for very large rectangles, the results of Ab
bot, Chen, and Cheng give little indication of how many points might be required to 
view a rectangle of any given small size. In particular, it is unlikely that any marching 
band would be large enough to find these results useful, even one from a large state 
university. This seemed to us to be a golden opportunity to tackle an unexplored and 
interesting problem. We leave plenty of questions for interested readers to continue 
our investigations .  

Lower bounds. Let's start by using Theorem 3 to demonstrate that two points are 
not enough to externally view 1::!.6,6 • Let P = (a 1 ,  a2) and Q be any two integer lat
tice points outside of 1::!.6, 6 . We consider the set S =  { (a 1  + 3j,  a2 + 3k) I j, k E Z not 
both 0} . No point in S is visible from P .  There are exactly four points in S n 1::!.6,6 , and 
they form a complete square modulo 2. By Theorem 3, these four points cannot all be 
externally viewed from Q .  Therefore e (6 , 6) > 2, and we will discover below that in 
fact e (6 , 6) = 3 .  

Not only that, a 6 x 6 rectangle i s  the smallest rectangle that requires three points . 
Consider the points (0, 0) and (0, - 1 ) .  If a and b are positive integers, (0, 0) is mu
tually visible with any point (a , b) such that a and b are relatively prime, and (0, - 1 ) 
is mutually visible with any point (a , b) such that a and b + 1 are relatively prime. 
If a is an integer from 1 to 5, then for every positive integer b, either a and b are 
relatively prime, or a and b + 1 are relatively prime. Therefore e (5 ,  s ) = 2 for all pos
itive integers s. We might also choose to define 1::!.5 ,00  as the set of all lattice points 
with x-coordinate from 1 to 5, and positive y-coordinate. Then by the same reasoning, 
e(5 ,  oo) = 2. 

We now know exactly which rectangles can be viewed from two external points : the 
rectangles with fewer than six points along one of their sides. Continuing our search 
for values of e (r, s ) ,  our next question is ,  what is the largest rectangle viewable from 
three external points? 

We try adding a third point to the two we already have, and we find that the points 
(0, 0) , (0, - 1 ) ,  and ( 1 5 ,  -2) externally view t:J. 14,s  for any positive integer s .  We have 
already seen that (0, 0) and (0, - 1 )  view all points (a , b) with either gcd(a , b) = 1 
or gcd(a , b + 1 )  = 1 .  The points in t:J. 14,s  not satisfying either of these criteria have 
one of the following forms :  (6, 6n + 2) , (6, 6n + 3) ,  ( 10, I On + 4) , ( 10 , IOn + 5) ,  
( 1 2 , 6n + 2) , ( 1 2 , 6n + 3) ,  ( 14, 14n + 6) , or ( 14, 14n + 7) ,  where n is a nonnegative 
integer. These points are shown as squares in FIGURE 4. By brute force, we can check 
that every one of these points is visible from ( 1 5 ,  -2) .  

We display a picture of 1::!. 14, 1 5 i n  FIGURE 4 .  The circles i n  the figure represent those 
points that cannot be viewed from (0, 0) . The line segments on the left illustrate how 
to view representative points among these from (0, - 1 ) .  (Drawing segments for all 
such points would make the diagram unnecessarily cluttered.)  The squares mark the 



(0, 0) 

(0, - 1 )  
( 1 5 ,  -2) 

Figure 4 Viewing � 1 4, 1 5  from the po i nts (0, 0),  (0, - 1  ), and ( 1 5 ,  - 2 ) . 
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points that can be seen from neither (0, 0) nor (0, - 1 ) .  The second set of line segments 
illustrates that these points are visible from ( 1 5 ,  -2) .  

Using the same ideas we used to show that e(2 ,  2 )  > 1 and e (6 ,  6 )  > 2 ,  w e  can 
prove a general lower bound for e (r, s ) .  

THEO R.EM 5 .  Let p ;  be  the i th prime number, so that p 1 = 2, p2 = 3 ,  p3 = 5 ,  and 
so on, and let rj E z+. Ifn = p�1 p;2 • • •  P? , then e (n ,  n)  > i .  

Proof. Let P1 = (x1 ,  y1 ) ,  • • • , P; = (x; ,  y; ) b e  i points not i n  /).n,n · B y  the Chinese 
Remainder Theorem, there exist numbers a and b ::::; n such that a = xk mod Pk > and 
b = Yk mod Pk > for each k between 1 and i .  Therefore xk - a and Yk - b are both 
divisible by Pk > and so (a , b) is not externally visible from any of the points P1 through 
P; . Thus, e(n ,  n) > i .  • 

C 1 Ir-r 'I r2 r; d ri r2 ri h ( ) OROLLARY . :1 r = p 1 p2 • • •  P; an s = p1 p2 • • •  pj , t en e r, s > 
min{i ,  } } .  

Note that i f  n i s  the product o f  the first i primes, then i = w (n) ,  the number 
of primes in the prime factorization of n .  In this case, i is approximately equal to 
log n I log log n [8] , and the bound we obtain in Theorem 5 looks very similar to the 
lower bounds on internal and internal-external visibility obtained by Abbot, Chen, and 
Cheng [1,  7] . 

More specifically, Theorem 5 tells us that e (30, 30) > 3 .  FIGURE 5 allows us to 
see a connection between Theorem 3 and Theorem 5 in this case. Let P be any point 
outside !).30, 30 .  The circled points in the figure represent a set of points in !).30, 30 that are 
not externally visible from the single external point P = (0, 0) . The light and dark gray 
disks pick out a pattern of those circles that includes 25 complete squares modulo 2. 
Note that if the location of P were changed, the location of these 25 complete squares 
modulo 2 would correspondingly change, but such complete squares would still be 
present among the points not viewable from P .  Since we have already seen that no 
complete square modulo 2 is visible from a single point, any second external point 
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Figure 5 Complete squares i n  �30,30 · 

must miss one point from each of these complete squares. The invisible point appears 
in the same location in every complete square modulo 2 because, for instance, if the 
viewing point is congruent to (0, 0) mod 2, it cannot view the point in each complete 
square that is congruent to (0, 0) mod 2. These points missed by the second external 
point are indicated by the dark grey circles. But notice that the dark grey circles form 
a complete square modulo 5, requiring at least two additional points to view the entire 
rectangle. 

So e( 14, s) = 3, and e(30, 30) > 3. We remark that (6, 0) , (6, - 1 ) ,  and (5, - 16) 
externally view �23, 19 ,  so e(23 , 1 9) = 3, but these points do not externally view �23,20 · 

OPEN PROBLEM 2 .  Find e(23 , 20) . 

OPEN PROBLEM 3 .  Find the largest value ofn such that e (n ,  n) = 3. 

Now that we have a general lower bound for e(r, s)  we ask for a general upper 
bound. Theorem 6 represents our best efforts in this direction, although it involves a 
sequence, 8 (n) ,  whose terms are not all known. 

First suppose that i is a positive integer. We let p (i )  be the size of the longest se
quence of consecutive positive integers sharing a common factor with i .  For example, 
p (p) = 1 for any prime p, since no two consecutive positive integers have the same 
prime factor. Also, p (6) = 3 since the consecutive integers 2, 3, and 4 all share a 
common factor with 6, but four consecutive numbers must include an odd number not 
divisible by 3 .  

Then w e  define 8 (n) = max{p (i ) I i ::; n} ,  i n  other words, the largest value o f  p (i )  
for any i between 1 and n .  Equivalently, 8 (n) i s  the size o f  the longest vertical line of 
lattice points that are not visible from (0, 0) in the rectangle �n. oo · 

THEOREM 6 .  e(n ,  n) :S 8 (n) + 1 .  
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Proof. B y  the definition of 8 (n ) ,  for any a < n ,  if w e  order the points i n  tl.n,n  with 

x-coordinate a by increasing y-value, then there are at most 8 (n) of these points in 
sequence not visible from (0, 0) . 

Therefore we may take the external points (0, 0) , (0 , 1 ) , . . .  , (0, 8 (n ) ) .  For any 
point (a , b) in tl.n,n • one of the integers b, b - 1 , . . . , b - 8 (n) is relatively prime to 
a .  Say that b - k is relatively prime to a .  Then (0, k) and (a , b) are mutually visible. 
Therefore the 8 (n) + 1 points listed can view all of tl.n,n • and e (n ,  n) :::: 8 (n)  + 1 .  • 

OPEN PROBLEM 4 .  Find a closed formula for 8 (n) .  
When n is the product of  the first j primes, let y (j )  = p (n ) .  In  other words, y (j )  

i s  the size of the longest sequence o f  consecutive positive integers such that each is 
divisible by one of the first j primes .  The sequence y (j ) is sequence A058989 in the 
On-Line Encyclopedia of Integer Sequences [13] , of which only the first 24 terms are 
known. This leads us to suspect that Open Problem 4 is hard. 

However, we do know a few small values of 8 (n ) .  In particular, we have 8 (5) = 1 
and 8 (6) = 3, so Theorem 6 gives us e (5 ,  5) :::: 2, which is exact, but e (6 ,  6) :::: 4, 
which is not exact. 

TABLE  1 :  The va l ues of e(r, s) for 1 :::: r, s :::: 30 .  

1 e (r. s) 1 1 1 1 2-5 1 6-14 1 1 5-19  1 20-29 1 30 1 n 
1 1 1 1 1 1 1 1 

2-5 2 2 2 2 2 2 

6-14 3 3 3 3 3 

1 5-23 3 3-4 3-4 3-4 

24-29 3-4 3-4 3-4 

30 4-6 4-6 

We summarize the known values of e (r, s) in Table 1 .  When a specific value is 
not known, the range of possible values is given. Note that since e (r, s) = e (s ,  r) as 
remarked above, the table is symmetric, and so values below the diagonal are omitted. 

CONJECTURE 1 .  If r :::: s and r :::: t then e (r, s ) = e (r, t ). 
OPEN PROBLEM 5 .  Find the values ofn for which e (n ,  n) > e (n - 1 , n - 1 ) .  

Marchi ng b a n d s  i n  space 

We can make an easy generalization to n-dimensional space from our formal defi
nitions, although the rocket packs required to support a three-dimensional marching 
band formation are as yet prohibitively expensive, and dimensions larger than three 
are even worse. As noted earlier, weak visibility does not become any more interesting 
in higher dimensions. There are, however, some interesting things we can say about 
external visibility in higher dimensions. 

Analogously, let tl.,1 , ,2 , . . .  , rn be the n-dimensional box of lattice points with comer 
at ( 1 , 1 , . . .  , 1 ) ,  and let en (r� o r2 , • • •  , rn ) be the smallest number of points outside of 
tl." ,r2 , . . .  , rn required to externally view tl.,1 n ,  . . .  , rn . We add the subscript n so that the 
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dimension we're working i n  i s  clear. Herzog and Stewart proved this generalization of 
Theorem 3 .  

THEOREM 7 . (HERZOG A N D  STEWART, 1 97 1 )  A given pattern P is realizable if 
and only if P fails to contain a complete hypercube modulo p for every prime p. 

Note that in particular, this means that en (2 , 2, . . .  , 2) = 2. However, since e ( l , 2) = 
1 ,  en ( l .  2, 2, . . .  , 2) = 1 for all n .  More generally, if ri and rj are the smallest of the 
numbers r1 , r2 , . . •  , rn , then en (r1 , r2 , • • .  , rn ) ::::; e (ri , rj ) , since we can take the points 
required to externally view l:!.r; ,rJ in two dimensions, and add arbitrary additional 
coordinates to increase their dimension to n , and these new points will externally view 

!:J.,J , r2 · · · · · 'n · 
So our values of e (r, s) in two dimensions are upper bounds for the values of 

en (rJ , rz , . . .  ' rn ) in n dimensions . 

OPEN PROBLEM 6 .  Find an example of integers r, s, and t for which r ::::; s < t 
and e(r, s) > e(r, s ,  t) , or prove that one does not exist. 
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In his book, Legends, Lies, and Established Myths of American History, Richard 
Shenkman (refuting the notion that undergraduate behavior has deteriorated 
lately) notes:  

In 1 830 students at Yale revolted over a change in the teaching of mathe
matics in an incident dubbed the "Conic Sections Rebellion." Before it was 
over, forty-three students-about half the class-had been expelled. 

Daniel Moran 
(Professor Emeritus) 
Michigan State University 
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If m and n are natural numbers with greatest common divisor 1 ,  the Chinese Remainder 
Theorem (or at least one version of it) states that for any two integers a and b there 
exists an integer x such that 

x = a (mod m) and x = b (mod n ) ,  

and that this x is unique modulo mn. 
There are various reformulations of  this result, for instance that the map [x  lmn t--+ 

( [x]m , [x ]n ) from Zmn to Zm x Zn is a ring isomorphism. However, for the purposes of 
this paper, the most useful formulation is the following: 

We set up an m x n grid of squares, and number the squares according to this rule: 
We let square number 1 be the one in the upper left-hand comer, and get from square 
number i to square number i + 1 by going one step down and one to right. If this is 
not possible (at the lower and right-hand edges of the grid), we "wrap around" to the 
opposite edge and continue. Then we will in fact number all mn squares. Moreover, 
the squares in the i th row will have numbers that are congruent to i modulo m,  and the 
squares in the jth column will have numbers that are congruent to j modulo n .  

For example, a 3 x 5 grid will be numbered as follows :  

1 7 1 3  4 1 0  

1 1  2 8 1 4  5 

6 1 2  3 9 1 5  

Note that the numbers in the i th row are i n  fact all congruent to i modulo 3 ,  and that 
similarly the numbers in the jth column are all congruent to j modulo 5 .  Thus,  if 
we need to find, say, a number that is congruent to 2 modulo 3 and congruent to 3 
modulo 5 ,  all we have to do is look at position (2 , 3 ) ,  and we see that 8 is a solution. 
Furthermore, among the numbers 1 , . . .  , 1 5  (that is,  working modulo 1 5 )  this is the 
only solution, since a solution would have to be in the second row and the third column. 

It is easy to prove the Chinese Remainder Theorem in this reformulation: In carry
ing out the numbering of the squares ,  we must eventually stop, because we come to a 
square that has already been numbered. This must be the square in the upper left-hand 
comer, since otherwise we could back-track a step to conclude that the last square we 
visited had in fact also be numbered previously. But in order to reach the upper left
hand comer, the number of steps must be both a multiple of m (to get us back to the 
first row) and a multiple of n (to get us back to the first column), that is, a multiple 

283 
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o f  mn (since m and n have greatest common divisor 1 ) .  S o  i t  happens after mn steps, 
prior to which we must have numbered mn different squares, that is to say all of them. 

If we imagine a deck of cards with m suits and n values in each suit, we can lay out 
the cards in an m x n array in such a way that all the cards in a row have the same suit, 
and all the cards in a column have the same value. For an ordinary deck (m = 4 and 
n = 1 3) ,  this might give us 

.A, .2, .3, .4, .5 , .6, .7 , .8, .9, . 1 0, .J, .Q . • K. 
<>A. <:>2, <:>3 , <:>4, <:>5 , <:>6, <:>7, <:>8, <:>9, <> 10,  <>J, <>Q. <>K, 
AA, A2, A3 ,  A4.  A5 ,  A6, A7,  A8,  A9, A 10,  AJ, AQ. AK, 
OA, 02, 03 ,  04, 05 ,  06, 07,  08 , 09, 0 1 0, OJ, OQ, OK. 

Of course, here it is not necessary that m and n have greatest common divisor 1 .  How
ever, if they do, the Chinese Remainder Theorem can be illustrated by picking up the 
cards according to the numbering of the grid. For instance, the layout above would 
give a sequence 

In this way, the cards are arranged such that the suits and the values go through re
peating cycles independently of each other. (In the case of the example, this would be 
• <> A O  and A, 2, 3, . . .  , J, Q, K, respectively.) 

Clearly, the nature of this arrangement (the independent cycling of suits and values) 
is unchanged if the deck is cut. Also, it makes it possible to work out which card 
occupies a given position i ,  simply by reducing i modulo m and n and interpreting 
the results as a suit and a value. For example, in the sequence above we would have 
• = 1 ,  <> = 2, A = 3 ,  and 0 = 4, as well as giving Aces, Jacks, Queens, and Kings 
the more-or-less customary values of 1 ,  1 1 , 1 2, and 1 3 .  If we then want to identify, 
say, the thirtieth card (starting the count from •A), the calculation would be: 30 = 2 
(mod 4) , so the card is a diamond; and 30 = 4 (mod 1 3 ) ,  so the card is a four; hence, 
the thirtieth card is <>4. (If we want to work out where a given card is located, that is of 
course possible as well : Take <>4 as an example. It is a four, so it must be in position 4, 
1 7  = 4 + 1 3 ,  30 = 4 + 2 · 1 3 ,  or 43 = 4 + 3 · 1 3 .  And it is a diamond, so the position 
must be = 2 (mod 4) . Of the numbers 4, 17 ,  30 and 43 , this singles out 30.) 

If, instead of simply taking the values in the straightforward A-K order, we pick 
some other arrangement, it is possible to make the deck look randomized and well
shuffled to anyone not paying too much attention, while still enabling calculations 
like the ones above, or simply making it easy to identify a missing card. One such 
arrangement is to let the values cycle through A, 4, 7, 1 0, K, 3, 6, 9, Q, 2, 5, 8, J 
(increasing in steps of 3 modulo 1 3) ,  that is, sorting the deck as 

This ordering of the deck is sometimes presented in books on card magic, and is known 
as Si Stebbins order. 

In the case of a deck with an odd (composite) number of cards, the Chinese Re
mainder Theorem works well with the Faro shuffle (also known as the perfect riffle 
shuffle), and it is the purpose of this note to point this out. This is by no means a deep 
observation, but does not seem to have been made in the literature. 

The Faro shume. The Faro shuffle is a method for shuffling a deck of cards where 
the deck is first divided into two packets . These are then meshed together, letting the 
cards interleave perfectly. For this to be possible, it is of course necessary that the two 
packets either contain the same number of cards, or differ in size by a single card. The 
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shuffle is named after the card game Faro (or Pharaoh), which was very popular in 
the 1 9th century, but seems to have gone out of style since. The rules are described 
by Morris [8, Ch. 1 ] .  Also, game compendia such as Scarne's Encyclopedia of Card 
Games will generally contain a description, and of course there are numerous web sites 
devoted to the subject. 

If we simply number the cards in an n-card deck from 1 through n, the Faro shuffle 
can be expressed as a permutation: 

DEFINITION . Let n be a natural number. 

(a) If n is even, the out-Faro shuffle on an n-card deck is the perfect riffle shuffle that 
leaves the top and bottom cards in place. As a permutation, it is given by 

f (i )  = { 2
2� 

- 1 ,  
z - n ,  

if i :S n/2 
if  i > n/2. 

The cards are then rearranged as 

1 -----
----- n/2 + 1 

2 -----
----- n/2 -'r- 2  

3 ----
----- n/2 + 3  

nj2 ---------- n 

(b) If n is even, the in-Faro shuffle on an n-card deck is the perfect riffle shuffle that 
shuffles the top and bottom cards into the deck. As a permutation, it is given by ( " ) { 2i , 

g l = 2 "  1 z - n - , 
if i ::: n/2 
if  i > nj2. 

To see how this rearranges the cards, simply interchange the two columns of num
bers in the illustration to (a) above. 

(c) If n is odd, the Faro or straddle shuffle is the perfect riffle shuffle. It will leave 
either the top or bottom card in place, and if the invariant card is number 1 ,  the 
permutation is 

h (i )  = 
{ 2� - 1 ,  

2z - n - 1 , 
if i ::: (n + 1 ) /2 
if i > (n + 1 ) /2. 

The rearrangement of the cards is as follows: 

1 -----
---- (n -'r- 3)/2 

2 -----
---- (n + 5)/2 

3 -----
---- (n + 7) /2 

----- n 
(n + 1 ) /2 

We see that the three types of Faro shuffles are closely related: If we simply ignore 
the top and bottom cards in the out-Faro shuffle, or the invariant card in the straddle 
shuffle, the remaining cards are subjected to an in-Faro shuffle. And moreover, we see 
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from the definition that the in-Faro shuffle can be described very easily in terms of 
modular arithmetic : The card in position i is moved to position 2i (mod n + 1 ) .  In 
particular, the order of the in-Faro shuffle on n cards (n even),  that is, the number of 
times the shuffle must be performed before the deck is back in its original order, equals 
the order of 2 modulo n + 1 ,  that is, the smallest natural number d such that 2d = 1 
(mod n + 1 ) .  

Thus w e  have 

PROPOSITION . (a) lfn is even, the order of the n-card out-Faro shuffle equals the 
order of2 modulo n - 1 .  

(b) If n is even, the order of the n-card in-Faro shuffle equals the order of2 modulo n + 
1 .  

(c) Ifn is odd, the order of the n -card Faro shuffle equals the order of2 modulo n. 

For instance, the out-Faro on an ordinary 52-card deck has order 8 ,  since 28 = 1 
(mod 5 1 )  and 24 ¢. 1 (mod 5 1 ) ;  the in-Faro has order 52. This last fact was observed 
by Johnson [6] . That eight out-Faroes will restore a deck of cards to its original or
der is well-known in the magical literature; a thorough description--complete with 
tables listing the ordering of the deck after each shuffle-can be found in Hugard and 
Braue [ 5, Ch. 1 . 1 6] .  

An alternative description of Faro shuffles was given recently by Scully [10] , using 
binary expansions. This description is particularly well suited to studying the cycle 
structure of the Faro shuffle, that is, subsets of the deck that are preserved under the 
shuffle. 

Note. The Faro shuffle is not completely trivial to perform. However, the knack can 
be acquired with practice, should one wish to do so. A good reference for learning it is 
Appendix 2 of Morris [8] , where he explains a Faro shuffle with numerous illustrations. 
It is also possible to find descriptions on-line, simply by searching on "Faro shuffle." 
The best way is probably to find someone who can do it, and get them to demonstrate. 

For an even-numbered deck, the two possible Faro shuffles (in and out) generally 
speaking do not mix well, and tend to generate a fairly large group of permutations of 
the deck. This is described in detail by Diaconis, Graham, and Kantor [3] . 

For an odd-numbered deck, on the other hand, the two straddle shuffles work well 
together, as shown by Golomb [4] : If the cards are numbered as 0 , . . .  , n - 1 instead 
of 1 , . . .  , n ,  one of the shuffles is the map i � 2i (mod n) ,  as for the in-Faro above 
(card number 0 being the invariant card), and the other is 

i � (n - 1 ) - 2[(n - 1 ) - i ]  = 2i + 1 (mod n) .  

This means that performing k straddle shuffles gives a map of the form i � 2k i + a 
(mod n )  for some a .  In particular, straddle shuffles can be mixed with cuts, that is, with 
maps of the form i � i + c (mod n) ,  and still yield basically the same outcome as the 
shuffles alone. (This is manifestly not true for an even number of cards : Golomb [4] 
shows that Faro shuffles and cuts together produce all possible permutations of an 
even-numbered deck.)  

Reversing the deck. As mentioned, 2 has order 52 modulo 53 .  A consequence of this 
is that 226 = - 1  (mod 53) ,  which again means that twenty-six in-Faroes will reverse 
the order of a 52-card deck. (This is never used by magicians:  Even with practice, it 
takes some seven minutes, and would seriously slow down any performance.)  
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More generally, in-Faroes can b e  used to reverse the order of an n-card deck (for 

n even) whenever - 1  is a power of 2 modulo n + 1 .  For instance, if n = 2k the in
Faro has order 2k, and k in-Faroes will reverse the order. (The out-Faro has order k in 
this case, and the group generated by the in- and out-Faroes is quite small and easy to 
handle. See Lemma 4 in Diaconis, Graham, and Kantor [3] for details . )  For decks with 
::::: 52 cards, an in-Faro reversal can be performed for n = 2, 4, 8 , 1 0, 1 2, 1 6, 1 8 , 24, 
26, 28, 32, 36, 40, 42, and 52. 

The Chinese Remainder Theorem, once again. Let N be an odd number, factored 
as N = mn . If gcd(m , n)  = 1 ,  multiplication by 2 modulo N corresponds to multi
plication by 2 modulo both m and n :  Consider the 3 x 5 grid from before, and let us 
number the squares from 0 to 14 instead of from 1 to 1 5 :  

0 6 1 2  3 9 

1 0  1 7 1 3  4 

5 1 1  2 8 14  

Numbering the rows from 0 to  2, and the columns from 0 to  4, we then again have that 
the numbers in the i th row are congruent to i modulo 3, and that the numbers in the 
jth column are congruent to j modulo 5 .  

Now, multiplying all the numbers by  2, we  get 

0 1 2  9 6 3 

5 2 14  1 1  8 

1 0  7 4 1 1 3  

Thus, the numbers i n  the i th row are now congruent to 2 i  modulo 3 ,  and the numbers 
in the j th column are congruent to 2} modulo 5 .  

This will work i n  general: If the numbers i n  the i th row were all congruent to i 
modulo m ,  they will of course be congruent to 2i modulo m after we multiply by 2, 
and similarly for the columns. In particular, this shows that the order of 2 modulo N 
must be the least common multiple of the orders modulo m and n :  Let A ,  B ,  and C 
denote the order of 2 modulo m ,  n ,  and N, respectively. Then we must have A I C 
to ensure that the numbers in the i th row are congruent to i modulo m ,  and B I C to 
ensure that the numbers in the j th column are congruent to j modulo n .  The smallest 
C satisfying these two conditions is C = lcm(A , B) .  

I n  terms o f  Faro shuffles, this result can b e  expressed a s  follows:  Suppose again 
that the deck consists of m suits, with n values of each, where gcd(m , n) = 1 .  We then 
arrange the deck in accordance with the Chinese Remainder Theorem as before, with 
the suits and the values running through their cycles independently. For instance, if we 
consider an ordinary deck with the spades removed (hence N = 39 = 3 · 1 3) ,  it could 
be sorted as 

,A, <>2, <:?3 ,  ,4,  <>5 ,  <:?6, ,7 , <>8 ,  <:?9,  ,1 0, <>J,  <:?Q, ,K, 
<>A, <:?2 ,  ,3 ,  <>4,  <:?5 ,  ,6 ,  <>7 , <:?8,  ,9,  <>1 0, OJ ,  ,Q, <>K, 
<:?A, ,2,  <>3 ,  <:?4,  ,5 ,  <>6,  <:?7 , ,8 ,  <>9,  <:? 10 ,  ,J,  <>Q, OK. 

Now, performing a Faro shuffle (of either kind) on this deck is, in a way, equivalent 
to performing m Faro shuffles, one for each packet of n cards: If we ignore the suits 
and simply consider the deck to be 1 ,  2, 3, . . .  , n , 1 ,  2, 3 , . . .  , the deck after the shuffle 
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consists o f  m packets of n cards, each of which i s  ordered as 1 , 2 , 3 , . . .  , n would be 
after a Faro shuffle. With the 39 cards above, the result would be 

.. A, 08 , <>2, .. 9, 03 , <>1 0, .. 4, OJ, <>5 , .. Q, 06, <>K, .. 7 ,  
OA, <>8, .. 2, 09, <>3 , .. 1 0, 04, <>J, .. 5 , OQ, <>6, .. K, 07 , 
<>A, .. 8 , 02, <>9, .. 3 , 01 0, <>4, .. J, 05 , <>Q, .. 6, OK, <>7. 

Here, the sequence A, 8 , 2, 9 , 3 , 1 0, 4, J , 5 , Q, 6, K, 7 is exactly the result of a straddle 
shuffle of A, 2 , 3 , . . .  , K. Similarly, the suits are shuffled: .. 0 <> is the result of shuf
fling • <> o. (Since the cards in the table are organized in three rows of thirteen cards, 
rather than the other way around, the arrangement of the suits before and after is not 
as obvious as the arrangement of the values.) 

In particular, cards that are n apart (counted cyclically) will have the same value 
after the shuffle, just as they had before, and cards that are m apart will have the same 
suit. This property is also (of course) preserved by cuts . Hence, a deck arranged in this 
way can be cut and straddle shuffled arbitrarily, and still be an arranged deck. 

Remark. This above principle, for 5 1  = 3 x 1 7 ,  is the basis for the "Chart of Sev
enteen" described by Hugard and Braue [5, Ch. 1 . 1 6] :  When performing an ordinary 
out-Faro, there are seventeen groups of cards that are preserved by the shuffle; these 
correspond to residue classes modulo 1 7 ,  except that the group containing the top and 
bottom cards has four cards in it. (But that hardly matters, since the top and bottom 
cards are unaffected by the shuffle.) 

Example. Take an ordinary deck and remove the spades. Order the remaining 39 
cards as above, cycling through suits and values independently. The sequences can be 
picked at random, for example as 

.. 4, <>A, 07 , .. 8, <>K, 02, .. 6 , <>9, OQ, .. 3 , <>5 , 0 1 0, .. J,  
<>4, OA, .. 7 ,  <>8 , OK, .. 2 , <>6, 09, .. Q,  <>3 , 05 , .. 10, <>J, 
04, .. A, <>7 , 08 , .. K, <>2, 06, .. 9, <>Q, 03 , .. 5 , <> 1 0, OJ. 

As observed, giving the deck any number of shuffles and cuts will not change the 
nature of this arrangement, and the cuts can of course be performed by somebody else. 

To turn this into a magic trick, one can do as follows: After enough shuffles and cuts 
to satisfy the spectator, ask him to cut the deck as often as he pleases and then take 
the top card. We may assume the cards to be ordered as above, from top to bottom, 
making his card the .. 4. Then ask him to pick up about half of the deck. You now 
pick up the rest, casually fanning out the cards with one hand. This shows you the OJ 
at the bottom, and further up the <>J followed by the 04 and .,A, telling you that his 
card is a four, and a club, that is, the .. 4. You then ask him to shuffle his card into his 
packet, illustrating by folding your cards together, taking the top card, inserting it into 
your packet, and shuffling. When you have both shuffled your packets, give yours to 
the spectator and ask him to shuffle them together. Since you already know his card, 
he can pretty much do as he pleases with the deck, and you can then proceed to reveal 
the card in whatever way you prefer. 

(Arranging the values as in the Si Stebbins order, with the cards increasing by a 
fixed amount modulo 1 3 , will unfortunately not work here : All the numbers 1 , . . .  , 1 2  
are powers of 2 modulo 1 3 , s o  no matter what step-value you start with, eventually 
the cards will just be in order A, 2 , . . .  , Q, K, and if the spectators see the deck at that 
point, it will be obvious that the cards are sorted.) 

Remark. If you have the memory for it, this trick can be performed with 5 1  cards as 
well. Just leave, say, the OK in the box, and declare the OA-Q to be the 14 through 1 7 
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of the other three suits, in some systematic way. Then you have redefined the deck to 
consist of three suits, with seventeen values each, and everything proceeds as above. 

Example. Once people have learned the mathematics of the Faro shuffle, one of its 
standard uses (getting the cards in a pre-arranged order while appearing to shuffle 
them) will of course fall flat. However, it is possible to do a Faro trick that depends on 
the audience knowing the math: 

Take an ordinary deck and remove the spades. Order the remaining 39 cards as 
follows, with the .teA visible : 

.teA, ¢2, 03 , .t-4, ¢5 , 06,  .t-7 , ¢8 , 09 ,  .t-1 0, ¢J,  OQ, .t.K, 
¢A, 02,  .t-3 , ¢4, 05 , .t-6, ¢7 , 08 ,  .t-9 , ¢ 1 0, OJ,  .t.Q, ¢K, 
OA, .t-2, ¢3 , 04, .t-5 ,  ¢6, 07 , .t-8 ,  ¢9, 01 0, .t.J ,  ¢Q, OK. 

This is the same arrangement used above. Spread out the cards for all to see, pointing 
out the ordering (of both suits and values).  Then perform a straddle shuffle, preserving 
the .teA, and ask what the order of the shuffle is. While this is worked out, you perform 
an additional five shuffles, making sure to count them out loud. 

The Faro shuffle on 39 cards has order 1 2, which is perhaps most easily seen by 
noting that 2 has order 12 modulo 1 3  and order 2 modulo 3 .  

Now point out that the shuffle you have performed i s  essentially an in-Faro on 
38 cards, with the .teA playing no real role. Also, note that sometimes performing in
Faroes will reverse the order of a deck. Obviously, if such a reversal happens after d 
in-Faroes, then the order of the in-Faro must be 2d . 

You have performed six in-Faroes on the 38 cards, and the order of the in-Faro is 12 .  
So ,  have the 38 cards reversed their order? 

No, since 26 = 64 = 25 ¢= - 1  (mod 39) . 
However, when you spread out the cards again, they are seen to be in the order 

.teA, ¢K, OQ, .t.J, ¢1 0, 09, .t-8 , ¢7 , 06, .t-5 , ¢4, 03 , .t-2, 
¢A, OK, .t.Q, ¢J, 01 0, .t-9, ¢8 ,  07 , .t-6, ¢5 , 04, 43 , ¢2, 
OA, .t.K, ¢Q, OJ, .t- 1 0, ¢9, 08 ,  .t-7 , ¢6, 05 , .t-4, ¢3 , 02 .  

This should fool most people, who are unlikely to  notice that only the values have 
reversed their order, while the suits are in exactly the same sequence as before. 

(And if you do not want to explain it afterwards, just make it an exercise.)  
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Have you ever reflected on the mystery of learning mathematics when you are strug
gling with a new concept or theorem, and suddenly, it may show up from a new angle 
and reveal something familiar that you can relate to? Thereafter, the pieces of an unfin
ished puzzle usually fall nicely into place. This is a story of a couple of such moments 
and of conquering an intriguing theorem on exponential functions. 

The other day my elderly colleague asked me to check whether a lemma, which we 
would need elsewhere, is true in certain cases. The lemma was the following one. 

LEM MA.  For n � 2, let K1 > · · · > Kn > 0 and t1 > · · · > tn- I � 0 and suppose 
that a 1 , • • •  , an are real numbers with a1 > 0. If the function 

n 
f (t) = I >jK; 

j= l 
satisfies f (ti ) = · · · = f(tn- I ) = 0, then f (t) > Ofor all t > t1 . 

The lemma seemed to be just another technical proposition, one of many, belonging 
to the folklore of real analysis. But since I have taken some courses in real analysis, 
naturally I accepted the challenge. 

Rather soon I was able to prove it for n = 2, 3, 4, the cases that were the most inter
esting with respect to our linear algebraic research. And since it was only a technical 
lemma, I am a little embarrassed to say it now, I just thought to leave it at that. 

But the lemma did not leave me in peace. I had a constant feeling that I hadn't 
yet figured out the deepest essence of the lemma. So, I had to return to it and find 
out what could have escaped my notice. Sooner or later, something made me think 
of the fundamental theorem of algebra and its well-known consequence, namely, that 
a polynomial of degree n has at most n roots . Then, almost immediately, the lemma 
started to take another shape. And now, if you think carefully enough, you certainly 
notice that it is very closely related to the following conjecture. 

CONJECTURE . For n E N and j = 0, . . .  , n, let 0 < Ko < · · · < Kn and aj E lR so 
that an #= 0. Then the function J : lR --+ IR, 

has at most n zeros. 

n 
f (t) = L ajKJ 

j=O 

There it was ! A statement that is very similar to the famous result on the number of 
the roots of a polynomial. Recall that a polynomial of degree n is a sum of n power 
functions and a constant function, possibly with some coefficients equal to zero. In 
other words, the similarity lies in the relation between the number of the terms in the 
sum and the upper bound for the number of the zeros. 
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At this point, I remembered that I had proved the lemma only for n = 2 ,  3 ,  4 ,  not for 

all n :::=: 2. The conjecture would not be of any interest if it held only for a few values 
of n .  How should I proceed now? 

The first thing that came to my mind was to ask whether a sum of n + 1 exponential 
functions could be presented, similarly as a polynomial of degree n, as a product of 
at most n simple terms whose zeros are easily detected. To my disappointment, I was 
not able to find such a presentation. My second thought then was to try to construct 
an example of a sum of n + 1 exponential functions that has exactly n zeros;  or even 
more which would mean the failure of the conjecture. 

A method for constructing examples. Now, clearly, an example to be constructed 
would be most useful if it applied for all n :::=: 1 .  Hence I decided to try a recursive 
method. 

Soon I noticed that I have to overcome at least two problems. First, suppose that 

fk (t ) = aoKb + · · · + akKk 
has exactly l zeros t1 < · · · < t1 which we may know or not. Now, adding ak+ 1 Kk+ I 
to fk implies that fk+ 1 (t j ) = 0 does not hold anymore for j = 1 ,  . . . , l .  But on the 
other hand, if l ak+1 Kk+ I I were small enough on the interval [t1 , tz ] ,  then the number of 
the zeros might be controlled som�how when shifting from fk to fk+ I · However, this 
approach requires that we know the interval where the zeros of fk lie. 

The second problem is that usually we do not know the zeros of !k and thus the 
interval [t1 , t1 ] .  This is simply due to the fact that, in most cases , we are not able to find 
a complete solution to the equation fk (t) = 0. Fortunately, it is possible to gain some 
information on the zeros of fk simply by exploring how !k changes sign. Recall that 
fk is continuous for every k :::=: 0. 

For the sake of simplicity, I also decided to use only exponential functions whose 
bases are at least one. Here is what I did. 

For 1 :::: Ko < KJ . it is easy to find constants a0 , a 1 E � so that 

!I (t) = aoKb + a1 Kf 
has exactly one zero. Suppose then that 

fk(t) = aoKb + · · · + akKk , 

where 1 :::: Ko < · · · < Kk > has at least k zeros t1 < · · · < tk whose existence has been 
verified by observing that, for some 0 :::: 80 < · · · < 8k > 

fk (8j ) = (- 1 ) j yj . 

in which all y/s have the same sign and 

bk = min{ I Yj l : j = 0, 1 ,  . . .  , k} > 0. 

( 1 )  

If we now fi x  Kk+ l > Kk and choose ak+ 1 s o  that ak and ak+ l have different signs 
and 

bk lak+ I I :::: -8-k- , 2Kk+ l 
then, by the triangle inequality and the fact that Kk+I is increasing, fk+ 1 (8 j ) and fk (8 j ) 
have the same sign and 

(2) 
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for every j = 1 ,  . . . , k .  This means that, similar to ( 1 ) , also fk+ 1 ( 8 j ) 's  oscillate about 
the t-axis but never equal zero. Hence fk+ 1 has at least k zeros in [80 , 8d . Moreover, 
since K{+ 1 is not bounded, there exists 8k+I > 8k so that 

fk+l (8k+J ) < - 1 .  fk+I (8k ) - (3) 

This implies that fk+ I has another zero in [8k > 8k+ I 1 ·  So we conclude that fk+ I must 
have at least k + 1 zeros in [80 , 8k+d altogether. Further, (2) and (3) guarantee that we 
can proceed with adding new exponential functions as many times as we want to. Here 
is an explicit example. 

EXAMPLE . For any natural number n and t E ffi., let 

I claim that fn alternates sign at the sequence t = 0, 2, 4, . . .  , 2n . Let us verify this 
for all natural numbers n . For t = 0, the leading term is F and it dominates the sum of 
the absolute values of the other terms. Similarly, for t = 2n the last term dominates. 
For any even integer t = 2k with I ::::; k ::::; n - 1 ,  the three terms j = k - I ,  k ,  k + I 
sum to zero. The terms for the leading tail, that is the terms j = 0, . . .  , k - 2 (if 
any exist), have the sum of their absolute values dominated by the term j = k - 2. 
Likewise the terms for the trailing tail, the terms j = k + 2,  . . .  , n (if any exist) , have 
the sum of their absolute values dominated by the term j = k + 2. Thus the sum of the 
two tails has the same sign as the term j = k, specifically ( - ll,  because the terms 
j = k - 2, k, k + 2 all have the same sign. 

For instance, for n = 5, we have 

and 

fs (O) = 1 - T 1 + T4 - T9 + T 16 - 2-25 > 0, 

fs (2) = 1 - 21 + 2° - T3 + 2-8 - T 15 < 0, 

fs (4) = 1 - 23 + 24 - 23 + 2° - T5 > 0, 

fs (6) = 1 - 25 + 28 - 29 + 28 - 25 < 0, 

fs (8) = 1 - 27 + 2' 2 - 2' 5 + 2'6 - 2'5 > 0 

fs ( lO) = 1 - 29 + 2'6 - 221 + 2-24 - 225 < 0. 

Clearly, f5 has at least 5 zeros. 
All in all ,  I was able to construct a sum of n + 1 exponential functions that has at 

least n zeros but not able to confirm that it had no more than n zeros. An important 
conclusion follows :  if the conjecture is true, it is sharp in the sense that the upper bound 
for the number of zeros is the best possible. 

A well-established example often leads the way to the proof. It is nearly a law 
of nature in mathematics that a well-motivated example fitting a theorem is half the 
battle of proving the theorem. Therefore, I decided to revise the above construction 
once again. 
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First I noticed that the recursive method I had chosen is based o n  the idea o f  math

ematical induction. Hence, if I could verify the statement of the conjecture in the case 
n = k + 1 using the same statement for n = k, the proof would be essentially done. 
Moreover, whenever I had not been able to count the number of the zeros directly, 
I had managed by counting something else that is connected to the zeros. And now 
remember what Rolle 's  theorem implies. If you know the number of the zeros of the 
derivative of a differentiable function, then you can bound the number of the zeros of 
the original function. And again, almost miraculously, the above construction began to 
change into the argument that converts our conjecture into a theorem! 

And now afterward, when I reflect on the proof, I still find it very elegant. The 
elegance, in my opinion, comes from the fact that it relies only on a few very basic 
results of classical real analysis and still it reveals quite an interesting property of 
exponential functions . 

To my surprise, I have not been able to find this result in the literature. However, I 
imagine that several mathematicians may have noticed it in the course of history, and 
yet we do not know if any actually did. Anyway, I take the liberty to name this theorem 
and call it the lost cousin of the fundamental theorem of algebra due to an apparent 
resemblance between that famous result and our theorem. 

The proof Let us consider first the case n = 1 .  By writing 1.. 1 = KJ /K0 , we have 

f (t) = KHa1 A.� + ao) = K�g (t ) , 

where f (t) = 0 if and only if g (t) = 0. Since 1.. 1 > 1 and a1 f. 0, there is at most one 
value t = t1 such that g (tJ ) = 0. 

Assume then that the claim holds for some n = k :::: 1 .  Similar to the above, we 
denote Aj = Kj /Ko in order to have f (t) = Kk+ 1 g (t ) ,  where 

k+ I 
g (t) = L: aj.A.j + ao ,  

j= I 

and A.k+I > · · · > 1.. 1 > 1 .  Again, f(t) = 0 if and only if g (t) = 0. 
Now, for all t E IR, the derivative of g is 

k+ I k 
g'(t) = L: aj (ln .A.j)A.j = L fJj/Lj ,  

j =I j =O 

where /Lj = A.j+J . {Jj = aj+ 1 ln .A.j+I and fJk f. 0. By the assumption, there exist at 
most k distinct numbers 81 < · · · < 8k such that g' (8 1 ) = · · · = g' (8k ) = 0. Thus,  by 
Rolle's  theorem, there are at most k + 1 distinct numbers t1 < · · · < tk+ I such that 
g (t1 ) = · · · = g (tk+ I )  = 0. The theorem follows. • 

There is still one thing to tell. My elderly colleague, who seems to know me quite 
well, reminds me every now and then that after having proved a theorem I should 
always check whether there is another one around the corner. So, let us consider the 
following question. Since exponential and logarithm functions share many important 
analytical properties (all of them are continuous, differentiable, integrable and, except 
for the constant function, strictly monotone etc .) ,  do we find another lost cousin by 
replacing the exponential functions with logarithm functions (to different bases) in our 
theorem? 

Well, the logarithm functions have certain arithmetical properties that eventually 
forces us to answer the question with "No". Let us consider the sum 
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n 

8n (t) = I >j logKj t ,  
j=O 
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where 1 < Ko < K1 < · · · < Kn and a/s are real numbers so that an f= 0 .  Changing 
logarithms to the same base e gives us 

where 

� ln t a gn (t) = � aj -- = ln t 
j=O ln Kj 

� a ·  
ct = � -1- .  

j=O ln Kj 

Now, depending on whether a is greater than, less than, or equal to zero, 8n is, re
spectively, strictly increasing with gn ( l )  = 0, strictly decreasing with gn ( l )  = 0, or 
gn (t) = 0 for every t > 0. 

Acknowledgments. The author wishes to thank one referee for improving the original example, and al l  the 

referees for their useful comments. 
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Not Mixing Is  J ust as Cool 
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Newton's law of cooling is a staple of the Calculus curriculum; it is usually presented 
as a first or second example of a separable differential equation. In that context, the law 
states that the rate of change of the temperature T of, say, a quantity of fluid is propor
tional to the difference between the fluid's temperature and the ambient temperature 
Too : 

dT dt = -k(T - T00) .  ( 1 )  

This i s  easily solved (part of the difficulty i n  solving i t  i s  dealing with initial condi
tions): 

(2) 

where T0 : =  T (O) is the temperature at time t = 0. 
The following problem is, for many students, a challenging application of Newton's  

law even given the formula (2). 
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PROBLEM . Which results in a cooler drink: 
( 1 )  Pour a cup of coffee, wait five minutes, and then add an ounce of cold milk or 
(2) Pour a cup of coffee, add an ounce of cold milk, and then wait five minutes ? 
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One challenging aspect of this problem is that a law for the temperature of mixed 
fluids must be either known a priori or else invented during the solution of the problem. 
We shall give it. If we mix two fluids (that are thermodynamically "similar") then 
the temperature of the mixed fluid is the average of the temperatures but weighted 
according to quantity. For example 3 oz. of water at 1 00 degrees mixed with 2 oz. of 
water at 1 50 degrees results in 5 oz. of water at (3 · 1 00 + 2 · 1 50) /5 = 120 degrees. 
In general, 

PRINCIPLE A.  If QA units of fluid at temperature TA is mixed with Q8 units of 
fluid at temperature T8, then the resulting mix has temperature 

(3) 

We will now solve the problem in two ways, one via Newton's  law, the other through 
intuition. 

Solution 1. Let Tc and Tm denote the initial temperatures of the coffee and milk 
respectively. Let's assume that a cup of coffee is the ' standard' 6 oz. though, as it turns 
out, this assumption will not affect the answer to the question. 

In case 1 ,  after 5 minutes of cooling, equation (2) predicts that the temperature of 
the coffee is 

(4) 

and, after mixing with milk, equation (3) predicts a final temperature of (6T (5) + 
Tm )/7 or 

1 6 -5k T1 := 7 (6Too + Tm) + ? (Tc - T00)e . (5) 

In case 2, mixing the coffee and milk yields 7 oz. of fluid at initial temperature 
(6Tc + Tm)/7 which, after cooling for 5 minutes, has temperature 

1 -5k T2 := Too + ;:; (6Tc + Tm - 7T00)e . 

Taking the difference and simplifying, we find 

1 -5k T2 - TI = 7 ( 1 - e ) (Too - Tm) .  

(6) 

(7) 

Hence, assuming that "cold" means colder than the ambient temperature T 00, Case 1 
yields a cooler drink. • 

Note that equation (7) implies that the difference of temperature in Case 1 and Case 
2 is independent of the temperature of the coffee. It is,  rather, the relative amount of 
milk that makes the difference. That is, the 7 in equation (7) comes from the ratio 1 :6 
of milk to coffee. We would replace the 7 by 9 if we used an 8 oz. cup of coffee. 

Consider now an ' intuitive' solution: 

Solution 2. Suppose we take 1 oz. of milk and allow it to warm up for 5 minutes 
while simultaneously allowing 6 oz. of coffee to cool. Then we mix them. Since it 
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makes no difference if the fluids were already mixed o r  not, the temperature of the 7 
oz. mix is the same as T2 • This is clearly warmer than if we do not allow the milk 
to warm up; that is, we keep it in the fridge until we mix it which is Case 1 .  Hence 
T1 < T2 • 

Although solution 2 is short and elegant, it lacks the rigor of solution 1 (especially 
in the phrase "since it makes no difference if the fluids are mixed or not"). It is not our 
goal to show the correctness of either method (not least because it is difficult to justify 
Newton's law or its assumptions thermodynamically) but rather to show that the two 
solutions are equally correct ! 

THEOREM . Not only does Newton 's law imply that "it makes no difference if the 
fluids are mixed or not " but also, if there is any law of cooling for which it "makes no 
difference if the fluids are mixed or not ", then it must be Newton 's Law. 

We shall henceforth assume that there is some law of cooling. What we mean by 
that is that given an ambient temperature Trxo and an object (e.g . ,  a quantity of fluid), 
the future temperature of the object depends only on its present temperature and the 
elapsed time. Furthermore, we shall insist it is reasonable that temperature changes 
monotonically and continuously, converging at oo to T 00 •  A mathematical way of say
ing all this is that there exists some monotonic and continuous function f with limit 
T 00 at oo such that 

If T (O) = f (to) then, for all t, T (t) = f (to + t ) .  (8) 

Select any two temperatures T1 > T2 > T 00• Also let us identify the unique choices 
t, and t2 for which T, = f (ti ) and T2 = f (t2) .  Finally, let r = (T2 - T 00)/(T1 - T 00) .  
Upon clearing the denominator, we  observe that ( 1 - r )T00 + rT1 = T2 • Let us  envi
sion mixing two quantities of fluid, an amount r of temperature T1 with a quantity 
1 - r at room temperature T00 • If we mix first, we get rT1 + ( 1 - r)T00 = T2 = f(t2) ,  
and then allowing the fluid to cool for a time period t ,  gives f(t2 + t ) .  But waiting 
first gives an amount r of f(t1 + t) to be mixed with an amount 1 - r of T00 yielding 
r f ( t 1 + t) + ( 1 - r) T 00 •  If mixing does not matter, these must be equal so 

rf(t, + t) + ( 1 - r)Too = fCt2 + t ) .  

This can b e  rewritten: 

Subtract T2 - T00 = r (T1 - T00) ,  and divide by t to get 

f (tz + t) - T2 f (t, + t) - T, .::.......c.-=-----'---=- = r -----
t t 

Assuming that f is differentiable, we may take the limit as t ---+ 0 to find 

Now set t = 0 in (9) and divide equation ( 1 0) by these equal quantities to get 

!' (t2) f' (t, ) 
f (tz) - Too - f(ti ) - Too .  

(9) 

( 1 0) 

Since this holds for any time t2 > t1 , the fractions must have a constant value, say -k, 

f ' (t2) 
= -k. f (tz) - Too 
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Upon integrating and exponentiating, we have 

ln(j(tl + t) - TrxJ = -kt + c 

j(t1 + t) = Too + Ce-kt 
T (t) = f (tl + t) = Too + (T1 - T00)e-k1 • 
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We have in fact derived Newton's  Law of Cooling. However in this approach we 
assumed, quite reasonably, that f is differentiable. We can avoid this assumption and 
succeed using the weaker assumption that f is continuous by using the technique of 
functional equations, a topic seldom seen in the undergraduate curriculum. To use 
this approach, set s = t2 - t1 in equation (9) and divide by the same equation with t 
replaced by 0 to get 

j(t1 + s + t) - Too 
f(tl + s ) - Too 

f (tl + t) - Too 
f (tl ) - Too 

Next multiply both sides by 

to give us 

f(tl + s  + t) - Too 
f (tl ) - Too 

f (t! + s) - Too 
f (tl ) - Too 

= f (tl + t ) - Too 
f (tl ) - Too 

This suggests that we can define a new function g (t)  : =  (j (t1 + t ) - T00)j (j (t! ) 
T 00) for t :::: 0 to reveal the functional equation 

g (s + t) = g (s )g (t) , g (O) = 1 .  ( 1 1 )  

This equation i s  (one of several) known as Cauchy's  equation (see [1]) and, assuming 
only the continuity of g (x)  it turns out that there exists a real number k such that 

g (t )  = e-kt . ( 1 2) 

This is remarkable, since infinite differentiability then follows from the much weaker 
condition of continuity (in fact, it follows from the even weaker condition of bounded
ness on an interval and continuity at a single point !-see [1] for details) .  We sketch a 
proof assuming continuity for all x .  As a first consequence, we can choose c =I= 0 with 
g (c) > 0. By induction and equation ( 1 1 ) ,  

g (nc) = g (c)n . 

Since g (c) = g (n (cjn))  = g (cjn)n , taking the nth root of both sides, 

g (cjn)  = g (c) l fn . 

Then g (mcjn) = g (cjn)m = g (c)mfn and so, for every positive rational x ,  

g (xc) = g (cY . ( 1 3) 

Since g (  -xc) g (xc) = g (  -xc + xc) = g (O) = 1 ,  equation ( 1 3) holds for all rational 
numbers x .  By the continuity of g, the two functions on either side of equation ( 1 3) are 
defined and continuous for each real number x and agree on the dense set of rational 
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numbers, and s o  equation ( 1 3) holds for all x .  Since there i s  some k such that g (c) = 
e-ke ,  we may rewrite ( 1 3) as equation ( 1 2) . 

To apply this to the previous problem, recall that g (t) := (f (t1 + t) - Trx:J/(f (tJ ) 
Tcx:J satisfies equation ( 1 1 ) . Using its solution ( 1 2), and the definition T (t) · 

f (t1 + t ) ,  we may write 

T (t) = Too + (T (O) - T00)e-kt 

for some k-Newton's  Law ! 
Going the other way, assume Newton's  law (2) . Then two similar fluids at temper

atures a and b respectively satisfy temperature laws 

I TJ (t) = T00 + (a - T00)e-kt 
T2 (t) = Too + (b - T00)e-kt 

respectively. If mixed in the proportion r : ( 1  - r ) , the resulting fluid has temperature 
law:  

T (t) := T00 + (ra + ( 1 - r)b - T00)e-kt = rT1 (t ) + ( 1 - r) T2 (t) 

which shows that mixing does not matter. • 

Equation (2) can also reasonably be called "Newton's  law of heating" when T (O) < 
T 00 • The extension to that case follows from Principle A and that mixing does not 
matter: if a fluid at initial temperature T1 (0) = T 00 + c and another at temperature 
T2 (0) = T 00 - c are mixed in equal proportions, then the mixed temperature is constant 
T 00 • Since the first fluid obeys Newton's  law (T1 (t) = T 00 + ce-k1 ) and since mixing 
does not matter, T2 (t) = Too - ce-k1 .  Since c = T00 - T2 (0) , 

We have purposely not addressed many of the assumptions necessary for Newton's 
law to give even a reasonable approximation to reality. That which makes Newton's 
law of cooling interesting (to Calculus teachers at least) is its simplicity and, as we 
tried to show, its inevitability given a few basic principles and a little knowledge of the 
Calculus or of functional equations .  

What then was Newton's  intuition? In his paper of 1 70 1 ,  written in Latin, no equa
tions appear. He wrote, however (this quoted from [2]) :  "the iron was laid not in a calm 
air, but in a wind that blew uniformly upon it . . .  for thus equal parts of air were heated 
in equal times, and received a degree of heat proportional to the heat of the iron." The 
results of this experiment in 'forced convection' led to the empirical law equivalent to 
( 1 )  and (2). We recommend the paper [2] and its references for further information. 

Acknowledgment. I thank the editor for extensive and detailed suggestions for the improvement of this article. 
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What do the solutions of a congruence look like, as the modulus varies? Let f (t )  be 
a polynomial with integer coefficients, let the solutions of f (t)  = 0 (mod m ) ,  if there 
are any, be r1 , r2 , • • •  , rb with 0 S rj S m - 1 ;  how are the numbers r1 , r2 , • • •  , rk 
distributed within the set {0, 1 ,  . . .  , m - 1 } ?  For a fixed f, how does the answer change 
as m increases? 

In order to compare answers for different values of the modulus,  it is convenient to 
divide through by the modulus .  Thus, we' ll define 

S1 (m) = {rim : 0 S r S m - 1 ,  gcd(r, m) = 1 ,  and m divides f (r ) }  

This makes S 1 (m) a (finite, possibly empty) subset of [0, 1 )  for each m ,  s o  the sets for 
various m are directly comparable. 

We' ll also let S1 be the union of the sets S1 (m) over all positive integers m .  It is 
this set that will concern us. 

Polynomials of degree zero are supremely boring in this context, so let's start by 
looking at polynomials of degree one. Let f (t )  = at +  b.  If at + b = 0 (mod m ) ,  
then at + b = m v  for some integer v ,  so 

t v b v - 1 
- = - - - = - + O (m ) .  m a am a 

Thus, most of the points in S 1 are very close to one or another of the points 
0, 1 la ,  21a ,  . . .  , 1 . Moreover, if v is relatively prime to a then there will be infinitely 
many m such that m v  = b (mod a) ,  and for such m there will be a point in S1 (m) 
close to via . Thus, we have a pretty good idea of what s1 looks like; very crowded 
near the points vI a with v relatively prime to a (and perhaps also near the other points 
of the form via-we encourage the reader to look at this more closely), very sparse 
everywhere else. 

Matters get considerably more complicated when we go to quadratics and polyno
mials of yet higher degree. Hooley [1] proved that if f is an irreducible polynomial of 
degree at least 2, with integer coefficients, then the sequence formed by ordering S 1 
by increasing denominator is uniformly distributed in [0, 1 ) . What does that mean? 

Consider, for example, the polynomial f (t) = t2 + 1 . The relevant sequence is then 
01 1 ,  1 12, 215 , 315 , 31 10, 71 1 0, 51 13 , 81 1 3 , 41 1 7, 1 31 17 , 7125, 1 8125 , 5126, 2 1 126, 
etc . In fact, it makes no difference for our purposes how fractions with the same de
nominator are ordered, so long as the denominators are in nondecreasing order. 

A sequence u 1 , u 2 ,  • • . of numbers in [0, 1 )  is said to be uniformly distributed in 
[0, 1 )  if in the limit each subinterval I of [0, 1 )  contains a proportion of terms of 
the sequence equal to the length of I .  That is to say, u 1 ,  u 2 ,  • • •  is uniformly dis
tributed in [0, 1) means limn-.oo #{i S n : a S u ;  < b}  In = b - a for all a and b with 
0 .:::: a < b .::; 1 .  Chapter 2 1  of Roberts [2] provides a gentle introduction to the theory 
of uniformly distributed sequences. 

Hooley's  proof uses tools at a level beyond that suitable for this MAGAZINE. The 
main purpose of this paper is to prove a weaker, but still interesting, result, using only 
readily accessible methods. 
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THEOREM . Let f (t) = t e  g (t) where e is a nonnegative integer, g is a polynomial 
of degree at least 2 with integer coefficients, and g (O) "I 0. Define T1 by 

T1 = {r/m : gcd(r, m) = 1 ,  and m divides f(r) } . 

Then T1 is dense in the reals. 

It is easy to see that if a sequence is uniformly distributed in [0, 1 )  then the set 
underlying the sequence is dense in [0, 1 ) . Our theorem is thus an immediate con
sequence of Hooley's ,  provided only that f have an irreducible factor of degree at 
least two. We will prove it without this requirement, and without reference to Hooley's 
result. 

We note that the theorem is best possible, in the sense that if f is a polynomial with 
integer coefficients but doesn' t  satisfy the hypothesis of the theorem then it is easy to 
see from the introductory remarks on first degree polynomials that T1 is not dense in 
the reals. 

Our proof proceeds along the following lines. Given f satisfying the hypotheses, 
and given a real number x, we choose rational numbers h J /  k1 and h2f k2 close to x . 
Then (h 1 a  + h2b) / (k 1a + k2b) is also close to x for all positive integers a and b. We 
show how to choose a and b in such a way that if r = h 1 a  + h2b and m = k 1a + kzb 
then m divides f (r) . 

First we show that a "weighted mediant" of two fractions lies between the fractions 
and is in lowest terms: 

LEMMA 1 .  If h 1 ,  h2, kb k2, a and b are positive integers and hd k1 < h2/ k2 then 

h 1  h 1 a  + hzb hz - < < - . k1 k 1a + k2b kz 
Moreover, if h 1 k2 - h2k1 = - 1  and a and b are relatively prime then h 1 a + h2b and 
k 1a + k2b are relatively prime. 

Proof. The inequalities are evident on viewing the weighted mediant as a weighted 
average of the two fractions hd  k1 and h2/ k2 with positive weights k 1a and k2b : 

(k1 a) (h J /  k 1 )  + (k2b) (h2f k2) 
k 1a + kzb 

If h 1 k2 - h2k1 = - 1 ,  let r = h 1 a  + h2b and m = k 1a + k2b and solve for a and b ;  
a =  h2m - k2r ,  b = k 1 r - h 1m . Now any common divisor of r and m divides both 
a and b, and the last assertion of the lemma follows. • 

Next we show that good approximations to x can be chosen to satisfy certain divis
ibility and coprimality conditions . 

LEMMA 2 . Given positive reals x and E, a positive integer c, a nonzero integer c', 
and an integer n ::=: 2, there are positive integers h i > h2, k 1 ,  k2 and d such that d is 
relatively prime to c', k2 = cdn- l , h 1 k2 - h2k 1 = - 1 , and ix - h ; /  k; l < E for i = 1 ,  2. 

Proof. Given any positive integer D, there is a positive integer H such that 
l x - H/Dn- l i :::; 1 / (2Dn- 1 ) . Let d = D2 , let h2 = cDn- I H + 1 ,  and let 
kz = cdn- l = cD2n-Z ; then 

Moreover, gcd(h2 , k2) = 1 ,  so there are positive integers h 1  and k1 such that 
h 1 k2 - h2k1 = - 1 ,  which entails that 
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lx - h t !  k1 l ::::= lx - hz/ kz l  + hd kz - h t f  k1 = lx - hz/ kz l + 1 j (k1 kz) 
:S 1 / (2Dn- l ) + 2j (cD2n-2) .  

3 0 1  

Now it suffices to choose D relatively prime to c' and large enough to ensure 
1 j (2Dn- l ) + 2j (cD2n-Z) < E . • 

Finally, we need a version of the Remainder Theorem, which we present without 
proof. 

LEMMA 3 . Given a polynomial f (t) of degree n and real numbers a and b, a i= 0, 
there is a polynomial q (t) such that 

an f(t) = (at + b)q (t) + an f (-bja) . 

Moreover, if a, b, and the coefficients off are integers, then so are the remainder and 
the coefficients of q .  

Proof of the Theorem. Let f(t) = teg (t) = cotn + c1 tn- 1 + · · · + Cn satisfy the hy
potheses. Note that if Tg is dense then so is Tf , so we may assume without loss of 
generality that e = 0. Thus, cn i= 0. We may assume that c0 is positive, since we may 
replace f with - f, if need be. If m divides f (r) then also m divides f (r + m Q) for 
any integer Q ,  so it is enough to prove that Tf is dense in the positive reals (indeed, in 
[0, 1 ) ) .  

Let x and E b e  positive. By Lemma 2 ,  there are positive integers h 1 , h2 , k � > k2 , and 
d such that gcd(d , Cn ) = 1 ,  kz = codn- l , h 1 k2 - h2k1 = - 1 ,  and l x - h; / k; l < E for 
i = 1 ,  2. Note that gcd(k� > k2) = 1 ,  whence gcd(d, k1 ) = I .  

Recall that we want to choose positive integers a and b in such a way that if 
r = h 1 a + h2b and m = k1 a + k2b then m divides f (r ) .  We claim this can be achieved 
by letting b = d + k1 s ,  where s is any multiple of cn large enough to guarantee 
k7 f(b/ k1 ) > kzb, and then defining a by k� f (b/ k1 ) = k1 a + kzb .  

Clearly, a is positive. Moreover, a is an integer, because 

and 

a = C1 bn- 1 + Czbn-Zkl + · · · + Cnk7- 1 + b(cobn- l - kz) /  k1 ( 1 )  

(cobn- 1 - kz) / kl = Co (bn- l _ dn- 1 ) / kl = cos (bn- l _ dn- 1 ) / (b - d) .  

From b = d + k1 s we deduce 

(2) 

We claim that a and b are relatively prime. For let p be a prime dividing both 
a and b. Then by ( 1 )  p divides Cn or k1 . By (2), p divides Cn . We chose s to be a 
multiple of Cn , so p divides s .  We defined b by b = d + k1 s ,  so p divides d .  But now 
we have reached a contradiction, as d was chosen relatively prime to Cn . 

Let r (t )  = h 1 t + h2b and m(t)  = k1 t + k2b .  By Lemma 1 ,  r (a)  and m(a) are 
relatively prime, and lx - r (a )jm(a) l < E . All that remains is to prove m(a)  di
vides f(r(a ) ) .  

B y  Lemma 3, there i s  a polynomial q (t) with integer coefficients such that 
k7 J (r (t) ) = m (t)q (t) + k7 f (r (  -kzb/ k1 ) ) . Thus, 

k7 f (r (t)) - m (t)q (t )  = k7 f (r (  -kzb/ k1 ) ) = k7 f (h l ( -kzb/ k1 ) + hzb) 
= k7 f ( ( -h 1 k2 + hzk1 ) (bj k1 ) )  = k7 f(b/ k1 ) 
= k1 a + k2b = m (a ) .  
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Evaluating at t = a, we see that m(a) divides k7 f (r (a)) . Any common prime di
visor of m(a) and k7 divides k2b, but k1 is relatively prime to b by (2) and also to k2 • 
Thus m (a) is relatively prime to kt . so it divides f (r (a) ) , and we are done. • 

R E F E RENCES 
I .  Christopher Hooley, On the distribution of the roots of polynomial congruences, Mathematika 11 ( 1 964) 39-
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A Curious Way to Test for Primes 
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Upon hearing that you are a student of mathematics, a cab driver says to you, "Check 
this out. The second derivative of ex is ex , right? And ex evaluated at 0 is equal to 1 ,  
right? Therefore 2 has got to be a prime number." Your first reaction is a condescending 
chuckle for the cabby who seems to dabble in mathematics and appears to make a 
jumble of it. "Well, at least she's logically correct-2 is a prime number," you mumble 
to yourself with some smugness. But the cab driver hears you and takes a long route to 
your destination. You end up paying a hefty fare. The cab driver smirks as she drives 
off. 

In fact, the smirking cabby stated a specific case of the theorem we provide below, a 
theorem which offers an unusual characterization of prime numbers based on differen
tiation. The cab driver could give another specific case by stating, "The third derivative 
of ex + ex2 12 evaluated at x = 0 is 1 ,  and thus 3 is a prime number." Offering another 
example, she could state accurately that, "The fourth derivative of ex + ex2 12 + ex3 13 
evaluated at 0 does not equal ! ,  and hence 4 is not a prime number." You can probably 
guess the pattern. We give it below in a theorem with a surprisingly simple proof that 
uses the series expansion of exk I k and the power rule for differentiation. 

THEOREM . For each positive integer n > 1, define the function gn by gn (x) = 

I:�:: exk fk . A positive integer n is prime if and only if fx
"
" 
gn (0) = 1 .  

Proof Let n be a positive integer greater than 1 .  Note that exk f k has a series expan
sion given by 

for all real x . Hence, we have 
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and upon differentiating gn we obtain 

n- i oo 1 dn k ' - ""' ""'  - - (x f )  - 6 f;:o kj j !  dxn 

L
n- i 

L
oo (kj ) (kj - 1 ) (kj - 2) · · · (kj - n + 1 )xkj-n . 

= I [kJ > n ] kj . , - ' 
k= l j=O J .  

3 03 

where the indicator function I [s ]  takes the value 1 if statement s is true and the value 
0 otherwise. Upon evaluating fx"n gn (x) at x = 0, we see that every term in the inner 
sum above vanishes except for the terms where kj = n .  Thus,  using k i n  to denote the 
statement "k divides n ," we get 

dn � n (n - 1 ) (n - 2) · · · (n - n + 1 )  
dxn 

gn (O) = 6 knfk (nj k) ! 
! [k in ]  

n- i 1 
= � knfk��/ k) ! 

! [k i n ] .  

If n i s  prime, the only divisor o f  n that i s  less than o r  equal t o  n - 1 i s  1 ,  i n  which 
case the summation above collapses to the single term for k = 1 .  Hence, when n is 
prime, we obtain 

If n is not prime and n > 1 ,  there exist positive integers k and r ,  both in the interval 
[2 , n - 1 ] ,  such that n = kr . Thus, if n is not prime and n > 1 ,  we have 

dn (kr ) !  -gn (O) :::0: 1 + -- > 1 .  dxn krr !  

We conclude with Maple code below that performs the primality test for small n .  

eval(diff(sum(exp(t/\k/ k) , k = l . .n - 1 ) ,  t$n) , t = 0) ; 

Replace n in the code with the specific positive integer you wish to test. If the output 
is 1 ,  then n is a prime. If the output is not 1 ,  then n is not a prime. 
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Excitement from an Error 
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A very lively discussion ensued after my advanced calculus class read the note "On 
Sequences" by Julio Cano that appeared in the American Mathematical Monthly in 
1 968 [ 1 ) .  When I made this assignment I simply wanted my students to read some 
mathematics other than their text book. I had skimmed the note to make sure the stu
dents would have the needed background to understand it, but didn' t  realize that an 
error was present. I had no idea that discovering this error in a published note would 
bring out such excitement and passion for mathematics from my students . I will give 
a synopsis of the discussion to illustrate the thought process of the class.  Will you see 
the error before it is revealed? 

We start by stating the proposition, and corresponding argument of its correctness ,  
from Cano's paper. 

PROPOSITION [ 1 ] .  If {ak } is a bounded sequence of real numbers such that ak =I 0, 
then there is a subsequence {bn } of {ak } such that {bn+dbn } converges. 

Argument as presented by Cano [1] .  We consider two cases : 

Case 1 :  There is a positive E such that for infinitely many k, lak I 2: E . Let { bn } be 
the sequence of {ad consisting of the ak with l ak l 2: E . Then l bn+dbn l :::: 
(supk l ak l ) /c for all n . 

Case 2: For every E > 0, ultimately l ak l < E . Then there is a subsequence {bn } of {ad 
such that I bn+ ! I < I bn I · Now in both cases the sequence of ratios {bn+dbn } is 
bounded, and thus by the Bolzano-Weierstrass theorem there exists a conver
gent subsequence. • 

The first comment was, "Something doesn't  seem right." The students realized that 
Cano proved that a subsequence of {bn+ 1 fbn } converges, not that {bn+ 1 fbn } converges 
as stated in the proposition. Now I heard things like, "But this was published, so it has 
to be right," or "why would they publish an incorrect proof." The students decided that 
they had to be wrong-if it was published it had to be right ! I suggested that we follow 
the steps of the proof with some sequences of real numbers . 

Wh d { } { 2 3 4 5 6 7 8 9 10 I I  } h 
. . I en we use ak = - , - 2 ,  3 ,  4: .  - 5 ,  - 6 ,  7 ,  8 ,  - 9 ,  - 10 , . . .  as t e ongma 

sequence in the proposition, it fell into Case 1 of Cano's argument. Choosing E = I 
allowed us to set bn = ak . Then {bn+dbn } = n .  - � . H .  -¥s ,  � . . . .  } ,  which does 
not converge but has two convergent subsequences ; {bn+ 1 fbn } for n odd and {bn+ 1 fbn } 
for n even. This is exactly what Cano said in the proof, but it is not what the statement 
of the proposition claims. "Great ! We have a counterexample, Cano's proposition is 
false !"  was the sentiment of the class at this point. 

Not so fast ! Looking at the odd terms of {ad we get 

{ bn+ l } 
= 

{ 4/3 -6/5 8/7 - 10/9 } 
= 

{ -2 -9 -20 } 
bn -2 ' 4/3 ' -6/5 ' 8/7 ' . . . 3 ' 10 ' 2 1  ' . . .  

which does converge as Cano wanted. 
Now what? Let's take a break and think about this . . . . After about a month's  time, 

we returned to this discussion. Many different ideas were presented; some dead end 
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"proofs" and others examples that turned out not to be counterexamples. In the end, 
we came up with the following proof. 

Proof of Proposition. Since { ak } is bounded, by the Bolzano-Weierstrass theorem 
it has a convergent subsequence, say {ed . We consider two cases. 

Case I : {ed --+ 0 as n --+ oo. In this case, for each E: > 0 there is a natural number N 
such that l ek l < E: for all k 2: N .  Let b1 = e1 and choose b2 such that l b2 1 s 
! l b J I . Choose b3 such that l b3 1 s fz" l b2 1 .  Continue in this manner choosing 

bn such that I bn I S 2"�1 I bn- ! 1 .  Now ���=11 1 S fn --+ 0 as n --+ oo and bn+ l /bn 
converges to 0. 

Case 2: {ed --+ e -=F 0 as n --+ oo. In this case we are going to show that { ck+l  } con-Ck 
verges. Let M be the bound of { ek } . Since e -=F 0, there is a natural number N1 
such that l en I > � for all n > N1 • For E: > 0 choose a second natural num-

ber N2 such that l ek - en I < �� for all k, n > N2 . If N = max{N1 , N2 } and 

k, n > N, we show { c�;1 } is Cauchy as follows: 

I ek+ l _ en+ I I = I ek+l en - eken+ l I ek en eken 

= 
l ek+ i en - ek+ i ek + ek+ l ek - eken+ l I eken 

= I (en - ek ) ek+ i + (ek+ l - en+ ! ) ek I eken 
l en - ck l i ck+ ! I + l ck+ i - Cn+i l l ck I < ------���----�--�----

cle  M cle M 
< 8M + 8M 

� 4 

l ckcn I 

= E: . 

Therefore, in both cases, there is a subsequence {bn } of {ad such that {bn+ 1 fbn } con
verges . 

• 

Carro's proposition is correct, but there was an error in his "proof." The moral of 
this story: Even mathematicians make mistakes, but an error can be serendipity ! 

R E F E R E NCES 
1 .  Julio Cano, O n  Sequences, A mer. Math. Monthly 7 5  ( 1 968) 645 . 
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Shanille P ractices More 
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The following problem appeared in the 63rd annual Putnam Exam on December 7, 
2002. 

Shanille O ' Keal shoots free throws on a basketball court. She hits the first and 
misses the second, and thereafter the probability that she hits the next shot is 
equal to the proportion of the shots she has hit so far. What is the probability she 
hits exactly 50 of her first 1 00 shots? [1] 

A natural generalization of this problem would be to increase the number of shots in 
determining her skill level. Suppose her skill level is determined by the fact that she 
made a and missed b shots. Then what is the probability, based on the criteria above, 
that she will make k out of the next n shots? 

Richey and Zorn recently developed a solution to this problem involving an ap
proach in a statistical setting; see this MAGAZINE [2] .  Their argument was an interest
ing application of Bayesian analysis .  It is the purpose of this note to solve this problem 
using a direct tree diagram approach. 

At this point we introduce some combinatorial notation that is convenient, but not 
used universally. For natural numbers a and k we define the falling factorial to be alkJ = 
a (a - 1 ) (a - 2) · · · (a - k + 1 ) . This is another name for the number of permutations 
P (a ,  k) . Similarly, we define the rising factorial a lkl = a (a + 1 ) (a + 2) · · · (a +  k -
1 ) .  This notation will be useful later in the paper. 

Let [a : b] denote Shanille 's skill level at the beginning of her shooting the n addi
tional shots . The probability of making k of these shots is the sum of the probabilities 
of the distinct ways in which she can make those k additional shots . The number of 
these different ways can be counted by specifying which of the n shots were made. It 
follows that there are C (n , k) distinct paths. 

The probability associated with any particular path will be the product of the n 
probabilities of making or missing a basket on any specific attempt. The probabil
ity of making (missing) a basket is the number of previous shots made (missed) di
vided by the number of previous attempts. The denominator of this product will be 
(a + b) (a + b + 1 )  · · · (a +  b + n - 1 )  = (a + b) lnl . The factors in the numerator will 
be a ,  a +  1 ,  a +  2, . . .  , a +  k - 1 for the events when the shot is made and b, b + 1 ,  
b + 2 ,  . . .  , b + n - k - 1 for the n - k events when the shot is missed. The product 
of these factors can be rearranged so the numerator is a lklb [n-kl for each of the C(n ,  k) 
paths. 

This leads to the theorem: 

Let [a : b] denote a skill level of making a shots and missing b shots in a + b 
attempts. Let P ( [a : b] ; k ,  n) be the probability of making exactly k of the next n shots. 
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Then 

C (n ,  k)a [k]b[n-k] 
P ([a : b] ;  k ,  n) = [ 1 (a + b) n 

Acknowledgement. We thank the referees for their very helpful comments. 
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Proposa l s  

To be considered for publica tion, solutions should be received by March 7 ,  2008. 
1776. Proposed by Leon Gerber, St. John 's University, Jamaica, NY. 

Let n be an odd integer, let fn (x) = ( 1  + x)n - ( 1  + nx) ,  and let Xn be the unique 
negative solution to fn (x) = 0. It is easy to show that fn has a positive relative maxi
mum at x = -2.  Prove that the sequence { fn (- 2) } is increasing, and that limn-.oo Xn = 
-2.  

1777. Proposed by Richard A. Jacobson, Houghton College, Houghton, NY. 
The graph of the relation lx + y l  + lx - y l  = 2 is a square of side length 2. Find 

positive integer n and real constants ak > bb cb 1 ::=: k ::=: n such that the graph of the 
relationL:Z= I l akx + bk y + ck l = 2 is 

a. a regular hexagon of side length 2. 

b. a regular dodecagon of side length 2.  

1778. Proposed by Jody M. Lockhart and William P. Wardlaw, U.S. Naval Academy, 
Annapolis, MD. 

Let q be a positive integer power of a prime and let Fq denote the finite field of 
q elements. For each positive integer n and each y E Fq , find the number of n x n 
matrices over Fq with determinant y .  

1779. Proposed by Will Gosnell, Amherst , MA, and Herb Bailey, Rose Hulman Insti
tute of Technology, Terre Haute, IN. 

Let ABC be a triangle with BC = a, CA = b, and AB = c, let e = LAC E , and 
let k = cjb. Alice walks from C to A at a constant speed, and Bob walks from B to A, 
also at constant speed. The sum of the two travel speeds is numerically equal to a , and 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE.  

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a lbTp<: file) to 

ehj ohnst(Qiastate . edu. All communications, written or electronic, should include on each page the reader's 

name, full address, and an e-mail address and/or FAX number. 
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for each the travel time is numerically equal to k312 • For which values of k can a value 
of e be found so that the given conditions can be satisfied? (This problem generalizes 
the problem with e = 90° posed by Will Gosnell in the February 2005 issue of Math 
Horizons. ) 

1780. Proposed by Yiu Tung Poon, Iowa State University, Ames, IA. 

For positive integer k, define odd(k) to be the number of odd digits in the (base-ten) 
expansion of 2k . Prove that 

Q u i ck ies 

� odd(k) 
= 

� 
� k • 
k=I 2 9 

Answers to the Quickies are on page 3 1 4. 
Q973. Proposed by Michael Andreoli, Miami-Dade College, North Campus, Miami, 
FL. 

Prove that for positive real numbers a , b, c, 

1 1 1 1 1 1 - + - + - > -- + -- + -- . 2a 2b 2c - a + b b + c  c + a  

Q974. Proposed by Ricardo Garda-Pelayo, Universidad Politecnica de Madrid, 
Madrid, Spain. 

Prove that 

f:<- 1)1 � (j ) = 1 + y - ln(2rr )
, 

}=2 J + 1 2 

where y is the Euler-Mascheroni constant and l; is the Riemann zeta function, defined 
for j = 2, 3, . . . by l; (j }  = .E:1 fi · 

So l ut i o n s  

A combinatorial identity. October 2006 

1751. Proposed by Iliya Bluskov, University of Northern British Columbia, Prince 
George, BC, Canada 

Let k1 , k2 , • • •  , kn be integers with k; :=:: 2, i = 1 ,  2, . . .  , n ,  and let N = .E7= 1 (� ) .  
Prove that 

( 1 )  
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I .  Solution by Robert Doucette, McNeese State University, Lake Charles, LA. 
Let x; = (� ) . Then, ('"'n ) 1 n ( n ) L-i=l X; 

= - L X; L:x; - 1  2 2 i= l i= l 

The desired result follows from 

II. Solution by Arthur T. Benjamin and Andrew Carman (student) Harvey Mudd Col
lege, Claremont, CA. 

We give a combinatorial proof. 
A city has n districts and, for i = 1 ,  . . .  , n ,  district i has k; representatives on the 

city council. The number of ways to select a ticket, an unordered pair of representatives 
from the same district is N = E7= 1 (� ) .  

On the right side of ( 1 ) , G) counts the ways to pick two different tickets. We claim 
the left side also gives this count. 

The number of ticket pairs that come from two different districts is L 1 ::':i <j :':n (� ) (k{ ) .  
The number of ticket pairs using four different people from district i i s  3 (� ) . because 
once we have chosen ticket members a ,  b, c, d, there are three ways to select the 
running mate of a. The number of ticket pairs involving three different people from 
district i is 3 (� ) . since once we have chosen ticket members a ,  b , c ,  there are three 

ways to pick which representative appears on both tickets . Since (� ) + e) = (;: 1 ) ,  
the total number of ways to pick a pair of tickets from the same district i s  3 E7 = 1 (;: 1 ) . 
The result now follows. 

Also solved by JPV Abad, Steve Abbott, Armstrong Problem Solvers, Ovidiu Bagdasar (Romania), Michel 
Bataille (France), J. C. Binz (Switzerland), Robert Calcaterra, Johann Chen, Haiwen Chu, Con Amore Prob
lem Group (Denmark), Chip Curtis, Knut Dale (Norway), Joe DeMaio, M. N. Deshpande (India), Fejentaltiltuka 
Szeged Problem Solving Group (Hungary), G.R.A.20 Problem Solving Group (Italy), Ralph P. Grimaldi, Enkel 
Hysnelaj (Australia) and Elton Bojaxhiu (Albania), Ronald A. Kopas, Harris Kwong, Elias Lampakis (Greece), 
Kathleen E. Lewis, McDaniel College Problem Group, Kim Mcinturff, William Moser (Canada), Michael Natan
son, Rob Pratt, Nicholas C. Singer, Albert Stadler, Marian Tetiva (Romania), Thomas R. Wilkerson, Stuart V. Witt, 
Paul Zwier, and the proposer. 

Lots of limit points. October 2006 

1752. Proposed by John Sternitzky and Robert Calcaterra, University of Wisconsin 
Platteville, Platteville, WI. 

Let lR be the real line with the standard topology. Prove that every uncountable 
subset of lR has uncountably many limit points . 

Many readers submitted a solution similar to the following. 
Let S c lR be a set with at most countably many limit points, let L be the set of 

points in S that are limit points of S, and let I = S\L be the set of i solated points 
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in S. We prove that I is at most countable. It will then follow that S = L U I is at 
most countable. Let x E I .  Because x is an isolated point in S we can find rational 
numbers r x ,  s x so that (r x ,  s x ) n S = { x } .  Thus, each x E I corresponds to a unique 
open interval with rational endpoints . It follows that I is finite or countably infinite. 
Hence, if S s; lR is uncountable then it must have an uncountable number of limit 
points. 

Note. Readers noted that this result appears (for Rn) as an exercise in Principles of 
Mathematical Analysis, Third Edition, by Walter Rudin, and as an exercise in the text 
Mathematical Analysis by G. E. Silov. 

Solved by Alejandro Aguado, Michael R. Bacon, Michel Bataille (France), Michael W Botsko, Paul Budney, 
Bruce S. Burdick, Haiwen Chu, Con Amore Problem Group (Denmark), A. K. Desai (India), Fejentaldltuka Szeged 
Problem Solving Group (Hungary), Eugene A. Herman, Enkel Hysnelaj (Australia) and Elton Bojaxhiu (Albania), 
Danrun Huang, Elias Lampakis (Greece), Thomas C. Laminae, Rick Mabry, Eric Mbakop, McDaniel College 
Problems Group, Eric Mbakop, Valerian M. Nita, Northwestern University Math Problem Solving Group, Michael 
Ontiveros, Paolo Peifetti (Italy), Albert Stadler (Switzerland), Richard Stephens, Marian Tetiva (Romania), Dave 
Trautman, Xiaoshen Wang, and the proposers. There was one incorrect submission. 

A subseries of the harmonic series. October 2007 

1753. Proposed by John C. George, Eastern New Mexico University, Portales, NM. 
Let n be a positive integer and let Sn be the set of all positive integers whose (base 

ten) digit sum is n. Determine the convergence or divergence of the series 

Solution by Marian Tetiva, Bfrlad, Romania. 
It is a very well known result that the equation 

x 1 + · · · + xi = n 

has (n+�- 1 )  solutions in non-negative integers, two solutions being considered different 
even if they differ only by order. Therefore the number of numbers with j digits that 
sum up to n (denote the set of these numbers by Sn , j ) is at most (n+�- 1 ) ,  since the digits 
x 1 ,  x2 , • . .  , x J of such a number must satisfy the above equation, and the conditions 
x1 E { 1 , . . .  , 9 } ,  x2 , • • •  , xi E {0, 1 , . . .  , 9 } .  In addition, any number with j digits, is 
greater than or equal to 1 Oi - I , It follows that 

L 
� = L L 

� 
< 

L: _I (n + j - 1) 
< 2n L: (�) j- 1  

kESn k j ;o- 1 kESn ,j  k - j ;o. l IOJ- l n - n !  j ;o- 1 5 ' 

where the last inequality follows from e+�- 1 )  < 2n+J- I _  Therefore the given series is 
convergent and its sum is at most 

2n ( 1 ) j - l 5 - L: - = 
n !  ' > I 5 4 } _  

Also solved by Michael Andreoli, Armstrong Problem Solvers, Michael R. Bacon, H. Bailey and R. 
Schoemacher, Michel Bataille (France), Robert Calcaterra, Haiwen Chu, John Cobb, Con Amore Problem 
Group (Denmark), Fejentaldltuka Szeged Problem Solving Group (Hungary), Dmitry Fleischman, Marty Getz 
and Dixon Jones, Michael Goldenberg and Mark Kaplan, G.R.A.20 Problem Solving Group (Italy), Eugene A. 
Herman, Enkel Hysnelaj (Australia) and Elton Bojaxhiu (Albania), Douglas E. Iannucci, Harris Kwong, Elias 
Lampakis (Greece), David P. Lang, Kee-Wai Lau (China), Kathleen E. Lewis, Marvin Littman, David Lovit, Rick 
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Mabry, Eric Mbakop, McDaniel College Problems Group, Michael Nathanson, Northwestern University Math 
Problem Solving Group, Nadeeka De Silva, Nicholas C Singer, Albert Stadler (Switzerland), Paul J. Zwier, and 
the proposer. There were two incorrect submissions and one solution with no name. 

Between the geometric and arithmetic means. October 2006 

1754. Proposed by Mihdly Bencze, Siicele-Negyfalu, Romania. 
Let a 1 , a2 , • • •  , an be positive real numbers . Prove that 

Solution by Michel Bataille, Rauen, France. 
If x 1 , x2 , • • •  , Xn are positive real numbers, then 

( 1 )  

This fol lows readily from Jensen's inequality applied to the convex function f(t) = 
ln( l  + e') with tk = ln xb 1 :S k :S n .  Setting xk = eak - 1 ,  1 :S k :S n ,  ( 1 )  gives 

n 
1 + n IT <eak _ 0 :s e( l fn) (a ,  +az+· -+an ) , 

k= l 

and the right inequality follows by taking logarithms. 
Next consider the function g defined by g (t) = In (exp(e1) - 1 ) .  Then 

e1 ee' (ee' - e1 - 1 ) 
" (t) - ---'-----;---,----'-g - (ee' - 1 )2 , 

and it is clear that this expression is positive for all real t .  Hence g is convex on R By 
Jensen's  inequality we then have 

Thus, ec - 1 < .y!Jl�=' (eak - 1 )  and the left inequality 

follows .  

Also solved by Michael Andreoli. Ovidiu Bagdasar (Romania), Erhard Braune (Germany), Robert Calcaterra, 
Haiwen Chu, Gordon Crandall, Chip Curtis, Knut Dale (Norway), Jose Luis Dfaz-Barrero (Spain), Charles R. 
Diminnie, Prithwijit De (Ireland), Robert L. Doucette, Fejentalaltuka Szeged Problem Solving Group (Hungary), 
Ovidui Furdui, G.R.A.20 Problem Solving Group (Italy), Enkel Hysnelaj (Australia) and Elton Bojaxhiu (Al
bania), Elias Lampakis (Greece), David P. Lang, Eric Mbakop, Northwestern University Math Problem Solv
ing Group, Paolo Perfetti (Italy), Teodora-Liliana Ri:idulescu and Vicentiu Ri'idulescu (Romania), Albert Stadler 
(Switzerland), Tony Tam, Thomas R. Wilkerson, and the proposer. 
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An asymptotic formula October 2006 

1755. Proposed by Michel Bataille, Rouen, France. 

Let a , b, c > 0 with b > c. Prove that, as n ---+ oo, 

(a + b)a+b (2a + b)2a+b . . .  (na + b)na+b 
--,------:-----c-::---c----:------,--- "' A (na ta+fJ 
(a + c)a+c (2a + c)2a+c . . .  (na + c)na+c ' 

for some positive real numbers A, a, and /3 .  

Solution by Eugene A .  Herman, Grinnell College, Grinnell, !A. 
Let En denote the given expression on the left. It suffices to show that 

log En = (na + f3) (log n + log a) + constant + o ( l ) 

for some positive real numbers a and /3 .  To derive ( 1 ) , first note that 

n 
log En = L)Ua + b) log (ja + b) - (ja + c) log (ja + c) ] 

j = I 
n 

= L [ (j a + b) (log a + log (j + � )) - (j a + c) (log a + log (j + � )) J 
j = I 

( 1 )  

n ( j + !!. ) n 
= n (b - c) log a + a � j log 

j +
; + � [b log (j + � ) - c log (j + � ) ] . 

(2) 

Next, we expand the second and third terms in the sum (2) with the help of the follow
ing Taylor remainder formulas for log ( 1  + x) with x > 0: 

log ( 1  + x) = x + R2 (x) ,  where I R2 (x ) l  :::; �x2 

log ( 1  + x) = x - �x2 + R3 (x) ,  where I R3 (x) l :::; tx3 , 

and Stirling's  formula: 

log n !  = (n + D log n - n + constant + o ( 1 ) .  

b - e 
Thus,  with k = -- , we have a 

n ( j + !!. )  n ( k ) L j log -:--{- = L j log 1 + � 
j= I 1 + a j = I 1 + a 

n ( k k2 ( k )) = j -- - + R3 --f; j + � 2 (j + � ) 2 j + � 
n ( k £ k2 k2 £ ) 

= L k - . _; £ - 2( . + £ ) + 2( . +
a £ )2 + constant + o ( l )  

J = l 1 a 1 a 1 a 
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= nk - t � (k � + k2 ) + � t . .  
1 

c (k � + 
kz ) 

j = 1 1 a 2 a j = 1 1 (1 + ;:;- ) a 2 

+ constant + o ( l )  

( c k2 ) = nk - k -;_ + l log n + constant + o( l ) . 

In addition, for any q > 0, we have 

n n 2:)og (j + q) = L (log j + log ( 1 + ]) ) 
j = l j = l  

= log n !  + t (� + Rz (�)) ; = I  1 1 

(3) 

= (n + D log n - n + q log n + constant + a ( I ) .  (4) 

Substituting (3) and (4) into (2), we conclude 

( ak2 ) log En = n ( b - c) log a + ank - kc + l log n + ( b - c) ( ( n + D log n - n ) 
bz - c2 + log n + constant + o( l ) 

a 

= n (b - c) log a + n (b - c) - (b - c 
c + (b - c)2 ) log n + n (b - c) log n 

a 2a 
1 b2 - c2 + - (b - c) log n - n (b - c) + log n + constant + o( l ) 2 a 

b - e 
= n (b - c) log a +  n (b - c) log n + -- (a + b + c) log n 2a 

+ constant + o( l ) . 

b - e 
This establishes ( 1 )  with a =  b - c and f3 = -- (a + b + c) . 2a 

Also solved by Knut Dale (Norway), Enkel Hysnelaj (Australia) and Elton Bojaxhiu (Albania), McDaniel 
College Problem Group, Albert Stadler (Switzerland), Nicholas C. Singer, and the proposer. There were two 
incorrect submissions. 

An swers 

Solutions to the Quickies from page 309. 
A973. We have 

I 1 1 l + ! l + ! ! + ! 2 2 2 
_ + _ + _ = _a __ b + _b __ c + _c __ a > __ + __ + __ 
a b c 2 2 2 - a + b b + c  c + a ' 

where the inequality follows from the arithmetic-harmonic mean inequality. 
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A974. Any positive integer can be written as follows:  

Therefore: 

n n - 1 n - 2  2 n = -- -- -- · · · -
n - 1  n - 2 n - 3  1 

= ( 1  + -
1 ) (1  + -

1 ) ( 1  + -
1 ) . . .  ( 1  + �) . 

n - 1  n - 2  n - 3  1 

In n: = I: ln (1  + �) i 
= I:  (1 - � + � - . . .  ) n . i= l J i= l  2] 3] 

1 n- 1 1 oo (- 1 )k L�- 1 ...!.. 1 
= (n - 1 ) - - L -:- + L J= l ik = n - n n  - ln C (n) . 2 j= l J k=2 k + 1 2 

3 1 5  

The last term is obtained by applying Stirling 's approximation to ln(nn /n !) ,  so that 
C(n) satisfies lim C(n) = ...(iii. We rewrite the last equality : 

n --+ oo  

1 
(

n- 1 1 ) oo ( - 1 )k L�:: jr 
n - 1 - - L -:- - In n + L = n - ln C (n) . 2 j= l J k=2 k + 1 

The desired result follows by letting n -+ oo. 

To appear in  The College Mathematics journal Novem ber 2 007 

Articles 

Pursuit Curves for the Man in the Moone, by Andrew J. Simoson 
More Mathematics in the Bedroom: A Paradoxical Probability, 

by Paul K. Stockmeyer 
Commensurable Triangles, by Richard Parris 
Do Dogs Know Bifurcations? by Roland Minton and Timothy J. Pennings 
Partial Fractions in Calculus, Number Theory, and Algebra, by C. A. Yackel 

and J. K. Denny 

Classroom Capsules 

An Area Approach to the Second Derivative, by Vania Mascioni 
Saddle Points and Inflection Points, by Felix Martinez de la Rosa 
Conic Sections from the Plane Point of View, by Sidney H. Kung 
The Convergence Behavior of fa (x) = ( 1  + � )x+a , by Cong X. Kang 

and Eunjeong Yi 



R E V I E W S  

PAU L  j .  CAM P B E L L, Editor 
Beloit  Co l lege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. A rticles, books, and other materials are 

selected for this section to call attention to interesting mathematical exposition that occurs out

side the mainstream of mathematics literature. Readers are invited to suggest items for review 

to the editors. 

Pilkey, Orrin H. ,  and Linda Pilkey-Jarvis, Mathematical models just don't  add up, Chronicle 

of Higher Education (25 May 2007) B 1 2. Useless Arithmetic: Why Environmental Scientists 

Can 't Predict the Future, Columbia University Press, 2007 ; xv + 230 pp. $29.95.  ISBN 978-0-
23 1 - 1 32 1 2- 1 .  

"We argue that quantitative modeling of complex systems i s  impossible." (Well, there goes 
applied mathematics, except for the simplest of phenomena.) The authors are sympathetic to 
"qualitative models," which provide direction and order-of-magnitude answers to the questions 
"how, why, and what if." But they are dead set against "quantitative models," dedicated to 
predicting "where, when, and how much." They offer detailed analyses of several venues of 
modeling . In terms of recognition of uncertainties, debate about model validity, and usefulness, 
from worst to best in their opinion are beach lifespans, shoreline erosion rates, water quality of 
abandoned pit mines, nuclear repositories, fish populations, sea levels, and invasive species. The 
authors rightly criticize some models for lack of comprehension of all relevant processes, but 
they tend to blame the modelers and the models for the purely economic and political purposes 
that demand, deploy, and defend the models .  Details of three models are given in an appendix. 
(Thanks to Darrah Chavey of Beloit College. )  

Alexanderson, Gerald L. ,  with Peter Ross (eds. ) ,  The Harmony of the World: 75 Years of Math

ematics Magazine, MAA, 2007 ; xii + 287 pp, $55 .95 (MAA members: $44.95).  ISBN 978-0-
88385-5607. 

How could I fail to review a book of the "best" of THIS MAGAZINE, celebrating its 75th 
anniversary? Did you know that the Stone-Weierstrass theorem was first published here in 
1 947/48? This collection gives scant coverage to material since 1 990 "since that is probably 
fairly well-known to potential readers and is generally more accessible." (How far back does 
your library 's run of THIS MAGAZINE go? My institution now routinely discards paper copies 
of journals once they are available on JSTOR, which contains the full archive of THIS MAGA
ZINE through 2003, with a moving "wall" of three years until archiving.) The editors introduce 
each reproduced article with valuable notes about it and the author. The title of the volume 
comes from an article by Morris Kline that "makes a case for mathematics as a cultural compo
nent that should be in everyone's background," a cause echoed 30 years later by Judith Grabiner 
in her "The centrality of mathematics in the history of Western thought." Although a very brief 
homage to the Problem Section is included and one book review from 1 936 is reproduced, 
I am naturally chagrined that none of my reviews in this column over the past 30 years got 
selected as part of the "best" of THIS MAGAZINE. However, I may have done my cause ir
reparable harm with one of my early reviews, of a 1 978 article about "uncrackable" codes; the 
review read in its entirety (I was magnificently briefer then):  "Popular account of new develop
ments in cryptology based on factorizations of large primes." [I thank Ramesh Kapadia and Ian 
Stewart for drawing this blunder to the world's attention in the last issue of their utterly delight
ful quasiperiodical Manifold #20 (Spring 1 980) 5, noting kindly that "Mathematics Magazine 

seems to know something that Euclid didn't." But my review and their remark didn't  make it 

3 1 6 
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into their "best," either-though the "ordered pears" figures on the same page did (Seven Years 

of Manifold 1 968-1980, edited by Ian Stewart and John Jaworski, Shiva Publishing, 1 98 1 ) . ]  

Chartier, Timothy P., Googling Markov, The UMAP Journal 27 (2006) ( 1 )  1 7-30.  Sobek, 
Markus, A survey of Google's PageRank, http : I /pr . ef act ory . de/ . Wills, Rebecca, The 
math behind the search engine, Mathematical lntelligencer 28 ( 4) (Fall 2006) 6-1 1 .  Bryan, 
Kurt, and Tanya Leise, The $25 ,000,000,000 eigenvector: The linear algebra behind Google, 
SIAM Review 48 (3) 569-58 1 .  Langville, Amy N., and Carl D. Meyer, Google 's PageRank and 

Beyond: The Science of Search Engine Rankings, Princeton University Press, 2006; x + 224 pp, 
$35.  ISBN 978-0-69 1-1 2202-1 . 

The four articles, listed in approximately increasing order of mathematical demand on the 
reader, explain the linear algebra behind Google's PageRank algorithm; Bryan and Leise even 
include exercises. The book by Langville and Meyer is a thorough analysis of both Page
Rank and some alternative ranking algorithms, incorporating Matlab code, citing downloadable 
datasets and crawler programs, and including a 50-page final chapter setting out the mathemati
cal basis in linear algebra, Perron-Frobenius theory, Markov chains, and more. Sobek considers 
briefly how to incorporate additional factors in ranking, such as the ones cited in Page's patent 
(strangely, Langville and Meyer do not include the patent--#6,285 ,999-among their refer
ences). The ubiquitous use of Google and other search engines should help motivate students 
in linear algebra-provided their instructor does such applications in the course. (The $25 B in 
the title of one article was the approximate market value of Google when it went public . )  

Devlin, Keith, and Gary Lorden, Th e  Numbers Behind Numb3rs: Solving Crimes with Mathe

matics, Plume, 2007 ; x + 236 pp, $ 1 3 .  ISBN 978-0-452-28857-7. 

For several semesters, I have taught a one-semester-hour seminar on the mathematics behind 
current episodes of the TV series Numb3rs, so I was utterly delighted to see this book appear. 
It helps answer the common questions : Is the math in Numb3rs real? (Yes.) Did---or could
math actually help solve a crime in the way depicted? (Sometimes, and yes, but "not in one or 
two 'television days."') Nine chapters take off from specific episodes to treat geographic profil
ing, data mining, changepoint detection, Bayesian inference, cryptology, fingerprints, networks, 
game theory, and casino Blackjack; four others consider topics common in several episodes 
(statistics, image enhancement) or that are generally relevant (DNA profiling, mathematics in 
court cases). I would have preferred more suggestions pointing the reader to further reading. 
An appendix summarizes for each episode of the first three seasons the "primary mathematical 
contribution to solving the case." By the time you read this, the fourth season will have started ! 

Gigerenzer, Gerd, Calculated Risks: How to Know When Numbers Deceive You, Simon & 
Schuster, 2002; ix + 3 1 0  pp, $20.95 . ISBN 0-7432-5423-6. 

"One in every 1 0  (or 9, or 8) women develops breast cancer." That's the slogan used to encour
age (scare) women to have regular mammograms. Gigerenzer deconstructs that statistic in the 
clearest fashion that I have seen, giving a table of frequencies (out of 1 ,000), by age, of num
bers of incidents and deaths from breast cancer, cardiovascular causes, and other causes. This 
example illustrates his thesis that understanding uncertainty and overcoming innumeracy about 
risks requires communicating risk intelligibly, largely through the use of what he calls "nat
ural frequencies" rather than conditional probabilities. Other chapters address communication 
of informed consent for medical procedures, AIDS counseling, wife battering, the prosecutor's 
fallacy, DNA fingerprinting, exploiting innumeracy, and how to teach clear thinking. 

Stewart, Ian, How to Cut a Cake and Other Mathematical Conundrums, Oxford University 
Press, 2006; xiii + 23 1 pp, $ 1 4.95 . ISBN 0-1 9-920590-6. 

"This is a book for the fans, for the enthusiasts, for the people who actively like mathematics"
in other words, it is perfect for readers of THIS MAGAZINE. (Author Stewart wanted to title it 
Weapons of Math Distraction.) Like some of his previous books, it is a collection of new edits of 
20 of his 96 columns from Scientific American and its foreign-language affiliates between 1 987 
and 200 1 ("all known mistakes have been corrected, an unknown number of new mistakes have 
been introduced") .  The topics of the columns were "selected primarily for amusement value, 
not for significance." Like his predecessor Martin Gardner, Stewart manages over and over to 
highlight the value and the fun of mathematics, with nary an equation in sight. 



N E W S  A N D L E T T E R S 
Car l  B .  A l len doerfer Awards-2 007 

The Carl B .  Allendoerfer Awards, established i n  1 976, are made to authors of exposi
tory articles published in MATHEMATICS MAGAZINE. The Awards are named for 
Carl B .  Allendoerfer, a distinguished mathematician at the University of Washington 
and President of the Mathematical Association of America, 1 959-60. 

Carl V. Lutzer, Hammer Juggling, Rotational Instability, and Eigenvalues, MATHE
MATICS MAGAZINE, 79 (2006) 243-250. 

Citation The author analyzes the physical phenomenon familiar to tennis players 
and hammer jugglers that certain objects flip when rotated about one of their three 
rotational axes-the 'middle' axis. The article is organized so that readers can under
stand the main ideas in a quick reading, but it also invites the reader to delve into the 
details. The mathematics is not trivial, but the exposition is lively and engaging. 

Lutzer uses Euler's equation, which gives the torque on a spinning object in ffi3 in 
terms of the angular velocity. The behavior of the rotating system is governed by a 
3 x 3 real symmetric matrix whose eigenvalues are positive and distinct. The author 
proves the positivity result using normed linear operators, which gives the reader a 
taste of the kind of mathematical methods typically used in the field. 

The stability of any rotation is easy to see when the alignment with the axis of ro
tation is perfect, but perfection is impossible to achieve in practice. The author then 
shows that when the system is perturbed slightly, the rotation about the axis corre
sponding to the dominant eigenvalue remains stable, so there is no flipping along the 
longest axis.  However for the middle eigenvalue, small perturbations rapidly propa
gate to produce large components along the other axes, so the object flips when rotated 
along this  axis .  

The author interweaves mathematical rigor with physical intuition throughout the 
paper. It could form the basis of a research project for students interested in physical 
applications of mathematics.  In particular, students with some background in linear 
algebra and multivariable calculus should be able to follow all of the details. 

For any reader, the article rewards careful study with a deeper understanding of a 
widely observed but not widely understood phenomenon. 

Biographical Note Carl Lutzer is an Associate Professor of Mathematics at the 
Rochester Institute of Technology, and was selected for inclusion in the "Who's  Who 
Among America's Teachers" in both 2003 and 2004. He was a finalist for RIT's 
Richard and Virginia Eisenhart Provost's Award for Excellence in Teaching in both 
2002 and 2003 , and was a 2000-2001 ExxonMobil Project NExT Fellow. He earned 
his PhD from the University of Kentucky under the direction of Dr. Peter Hislop. His 
mathematical research interests tend to lie in the analysis of partial differential equa
tions and their application to physics and biology. In addition to mathematics and 
teaching, he enjoys writing fiction, fencing (the sport, not the barrier), and being a 
father. 

Response from Carl Lutzer I 've always enjoyed the articles in MATHEMATICS 
MAGAZINE, so I was excited when my article was accepted for publication. Win-
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ning the Carl B .  Allendoerfer Award has redoubled that excitement, and I now find 
myself speechless-I've struggled for a week to write this simple paragraph ! So I ' ll 
just say that I am tremendously honored to win this award. I 'd like to thank the editor 
and referees for their helpful suggestions, as well as my friends and colleagues at RIT 
for being so supportive. Lastly, I 'd like to thank Ray Hodges for introducing me to the 
phenomenon, saying, "Hey, watch this ! "  

Saul Stahl, The Evolution o f  the Normal Distribution, MATHEMATICS MAGAZINE, 
79 (2006) 96-1 1 3 .  

Citation All students who take a statistics course, and anyone who analyzes data, 
encounter the normal curve early in their study. This article traces the historical roots of 
the normal distribution and its early development by mathematicians and statisticians. 
This fascinating account includes false starts by some very famous mathematicians, 
disagreements about whether the mean or the median should be used to summarize 
data (or whether any single number should be used at all), and shows where the word 
'normal ' came from. 

Throughout the 1 8th and 1 9th centuries, scientists needed tools to analyze the data 
they were collecting. The author begins with an early example of the binomial distribu
tion: the Dutch mathematician Willem 's Gravesande analyzed data to decide whether 
the difference between the number of male and female births in London from 1 629 
to 1 7 1 0  was explainable by chance. Such calculations were difficult, and in 1733 ,  De 
Moivre found a way to approximate the binomial distribution using the normal curve, 
now familiar to all statistics students . 

Much of the motivation for the development of the subject came from attempts to 
understand the errors associated with observations in astronomy. The author does an 
admirable job of tracing this history. Gauss plays a central role here, with his calcula
tion of the orbit of Ceres leading to his proof that the normal distribution describes the 
distribution of observational errors .  The author presents Gauss ' proof here; a reader 
with a background in calculus should be able to understand the entire argument. 

Stahl does a wonderful job of blending some interesting historical research with 
mathematical details to appeal to a very wide audience. Along the way, we encounter 
many familiar mathematical names: Jacob and Daniel Bernouli, Cotes, Simpson, 
Laplace, and Gauss, of course. The extensive bibliography will be valuable for readers 
wishing to learn more of the historical details. 

Biographical Note Saul Stahl was born in 1 942 in Antwerp, Belgium. He received 
his BA from Brooklyn College in 1 963 , his MA from the University of California at 
Berkeley in 1 966, and his PhD from Western Michigan University in 1 975.  He served 
in the Peace Corps in Nepal, worked as a systems programmer for IBM in Endicott, 
NY and also as a postdoctorate fellow at Wright State University in Fairborn, Ohio. 
He joined the faculty of the University of Kansas in 1 977 where he is now a Professor 
of Mathematics. Most of his research was done in the area of graph theory. He has 
written six textbooks at the junior-senior level whose exposition is very much informed 
by the evolution of their respective subject matters. Saul 's  current hobby is the Tango 
Argentino. His concern with the center of gravity of the dancers fits in nicely with his 
current research on the center of mass in hyperbolic geometry. 

Response from Saul Stahl I am honored to receive the Carl B. Allendoerfer Award 
from the MAA. The gathering of the information for the article that earned me this 
award was greatly facilitated by the excellent histories written by Anders Hald and 
Stephen M. Stigler. 



3 2 0  MATH EMATICS MAGAZI N E  

4 7th I nternat iona l  Mathemati ca l  O l y m p i ad 
Lj u b lj a n a, S l oven i a  

j u l y  1 2  a n d  1 3 , 2 006 

edited by Zuming Feng, Cecil Rousseau and Yufei Zhao 

PROBLEMS 

1 .  Let ABC be a triangle with incenter I. A point P in the interior of the triangle 
satisfies 

LPBA + LPCA = L PBC + LPCB . 

Show that AP  2:: AI ,  and that equality holds if and only if P = I . 
2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide 

the boundary of P into two parts, each composed of an odd number of sides of P. 
The sides of P are also called good. 

Suppose P has been dissected into triangles by 2003 diagonals,  no two of which 
have a common point in the interior of P. Find the maximum number of isosceles 
triangles having two good sides that could appear in such a configuration. 

3. Determine the least real number M such that the inequality 

l ab(a2 - b2) + bc(b2 - c2) + ca (c2 - a2) 1 ::::; M(a2 + b2 + c2)2 

holds for all real numbers a ,  b, and c . 
4. Determine all pairs (x ,  y) of integers such that 

1 + 2x + 22x+l = Yz . 

5 .  Let P (x)  be a polynomial of degree n > 1 with integer coefficients and let k be a 
positive integer. Consider the polynomial 

Q (x)  = P (P (  . . .  (P (x) . . . ) )  
k P's  

Prove that there are at most n integers t such that Q (t) = t .  
6 . Assign to each side b o f  a convex polygon P the maximum area o f  a triangle that 

has b as a side and is contained in P. Show that the sum of the areas assigned to 
the sides of P is at least twice the area of P. 

S OLUTIONS 

1 .  We note that ( LPBA + LPCA) + ( LPBC + LPCB) = LB + LC, so L PBA + 
L PCA = L PBC + L PCB = ( LB + LC)/2. In triangle PBC, we have 

LBPC = 1 80° - ( LP  BC + L PCB) = 1 80° - ( LB + L C)/2.  

It  is clear that L l  BC + LICB = (LB + LC)/2, and so in triangle BCI, LBIC = 
1 80° - ( LB + LC)/2 . We conclude that LBPC = LBIC ;  that is, points B, C, I ,  
and P lie o n  a circle. 

Let the line AI meet the circumcircle of ABC again at point M. Then M is the 
midpoint of the arc BC not containing A . It is well known that M is the circumcen
ter of triangle BC I ,  and thus M P = MI . 

In triangle A PM, we have AI + I M = AM ::::; AP  + PM =  AP + I  M, im
plying that AI ::::; AP . Equality holds if and only if AM = A P  + PM; that is , 
A ,  P ,  and M are collinear, or P = I . 
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2. We claim the desired maxmimum is M =  1003 . Define a good triangle to be an 
isosceles triangle having two good sides. Let P = P1 P2 . . .  P2006 , and let w denote 
the circumcircle of P. Without loss of generality, points P1 , . . .  , P2006 are arranged 
in clockwise direction along w. Then Pi Pj is good if and only if i - j is odd. Since 
2006 is even, a good triangle has exactly two good sides. 

First, we construct a triangulation with 1 003 good triangles. We can first use the 
diagonals P1 P3 , P3 P5 , . . .  , P2o03 P2oos . and P2oos P1 to obtain 1 003 good triangles. 
We can then complete the triangulation by providing an arbitrary triangulation of 
P1 P3 • · • P2005 using 1 00 1  diagonals .  Therefore, M 2: 1003 . Next, we show that 
M < 1003. 

Let ifPj denote the clockwise directed broken line segment Pi Pi+ l . . .  Pj 
(where P2006+k = Pk) .  We say ifPj is non-major if it contains at most 1 003 sides 
of P. 

Let Pi Pj Pk (i < j < k) be a good triangle, with Pi Pj and Pj Pk being good 
segments. This means that there are an odd number of sides of P between Pi and 
Pj and also between Pj and Pk . We say ifPj and p;Fk belong to triangle ABC .  

At least one side i n  each of these groups does not belong to any other good 
triangle. This is so because any odd triangle whose vertices are among the points 
between Pi and Pj has two sides of equal length and therefore has an even number 
of sides belonging to it in total . Eliminating all sides belonging to any other good 
triangle in ifPj must therefore leave at least one side that belongs to no other good 
triangle. The same argument applies to p;Fk .  Let us assign these two sides (one in 
ifPj and one in p;i>k )  to triangle Pi Pj Pk . 

To each good triangle we have thus assigned a pair of sides, with no two good 
triangles sharing an assigned side. It follows that at most 1 003 good triangles can 
appear in the triangulation; that is, M ::::; 1 003 . 

3 . Note that ab(a2 - b2) + bc(b2 - c2) + ca (c2 - a2) = (a - b) (b - c) (c - a ) (a + 
b + c) . By symmetry, we may assume that a > b > c. Since each side of the in
equality has degree four, it suffices to find the smallest M such that 

( 1 )  

for real numbers a > b > c with a + b + c = 1 . Setting a - b = x and b - c = y ,  
we have a - c = x + y . Since a +  b + c = 1 ,  we have (a - b)2 + (b - c)2 + (c 
a)2 = 3 (a2 + b2 + c2) - 1 . We can rewrite ( 1 )  as 

9xy (x + y) ::::; M [x2 + l + (x + y)2 + I f 
for positive real numbers x and y .  

The AM-GM Inequality yields 

x2 + y2 + (x + y )2 + 1 = ( x2 + �) + (y2 + �) + (x : y )2 + (x : y )2 
r,:; r,:; (x + y )2 2: v �x + v 2y + 2xy + 2 
4/ r,:; r,:; (x + y )2 2: 4y (v 2x ) (v 2y) (2xy) · 2 

= 4�2x2y2 (x + y)2 , 

(2) 

or (x2 + y2 + (x + y)2 + 1 )2 2: 1 6.J2xy(x + y), implying that the minimum value 
of M is equal to 9.J2/32, obtained when x2 = y2 = � - When x = y = .J2;2, 
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{a , b ,  c }  i s  an arithmetic progression with sum 1 and common difference ../2/2; 
that is ,  ( 1 1 1 1 1 ) (a , b , c) = 3 + 

../2
' 3 '  3 - ../2 . 

4. The answers are (x ,  y) = (0, ±2) and (x , y) = (4, ±23) .  We consider the nontriv
ial case when both x and y are positive. 

The equation rewritten as 2x ( 1  + 2x+ 1 ) = y2 - 1 = (y - 1 )  (y + 1 )  shows that 
the two numbers y - 1 and y + 1 have gcd = 2, and exactly one of them is divisible 
by 4. Hence x :=:: 3 and one of y - 1 and y +  1 is divisible by 2x- I but not by 2x . 
Consequently, we may write 

where m is odd and E = ± 1 . Plugging this into the original equation we obtain 

2x ( l + 2x+ l ) = (2x- Im + E)2 _ 1 = 22x-2m2 + 2xmE ,  

or  1 + 2x+ I  = 2x-2m2 + mE .  I t  follows that 

(3) 

(4) 

If E = 1 , (4) becomes 1 - m = 2x-2 (m2 - 8) ,  which has no solution. Thus E = - 1 ,  
so (4) becomes 1 + m = 2x-2 (m2 - 8 )  :=:: 2(m2 - 8) ,  implying that 2m2 - m -
17 ::::; 0. Hence m ::::; 3 .  On the other hand, m f= 1 by (4) . Because m is odd, m = 3, 
leading to x = 4 by (4) . Substituting these into (3) yields y = 23, completing our 
proof. 

5 .  Let N denote the set of integers. We define 

Sp = {t I t E N  and P (t) = t }  and SQ = {t I t E N  and Q(t) = t } .  

Clearly, S p  i s  a subset of SQ . Also note that there are at most n elements in Sp . This 
is so because t E S P if and only if t is a root of polynomial P (x ) - x = 0 of degree 
n ,  which has at most n roots. If SQ = Sp , there is nothing to prove. We assume that 
Sp is a proper subset of SQ . and that t E SQ but t tt Sp . 

Consider the sequence { t; }�0 with t0 = t ,  ti+ 1  = P (t; ) for every nonnegative 
integer i .  Since t E SQ , tk = Q (t0) = Q (t) = t = t0 • Note that for each nonnegative 
integer i the sequence { t; }�0 satisfies the divisibility relation (ti+ 1 - t; ) I (P (t;+ 1 ) -
P (t; ) )  = ti+2 - ti+ I · Since tk+ I - tk = t1 - t0 = P (t) - t f= 0, each term in the 
chain of differences t1 - t0 , t2 - t1 , . . .  , tk - tk- I , tk+ I - tk is a nonzero divisor of 
the next one, and since tk+ 1  - tk = t1 - t0 , all these differences have equal absolute 
values. Let t; = max{t0 , t1 , . . .  , tk } .  Then t; _ 1 - t; = - (t; - ti+ t ) ,  or t; - I = ti+ I ·  It 
is then not difficult to see that ti+z = t; for every i ; that is, 

Therefore, 

t1 = P (to) and to = P (t1 ) or P(P (to) ) = to . 

SQ = {t I t E N and P ((P (t) ) = t } .  

Without loss of generality, w e  may assume that to < t1 . If s0 i s  another element in 
sQ . let SJ = P (so) .  (It is possible that So E Sp ; that is, St = So .) We further assume 
without loss of generality that s0 < s1 and to < s0 ; that is, t0 < s0 ::::; s1 and to < t1 . 
Note that s1 - t0 divides P (s 1 )  - P (to) = so - t1 • We must have to < so < s1 < t1 . 
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Note that s0 - t 1  also divides P (s0) - P (t1 ) = s 1  - t0 , i t  follows that s0 - t 1  = 
- (s 1 - to) ; that is,  

to + t1 = so +  s1 = so + P (so) . 

In other words, s0 is a root of the polynomial P (x) + x = to + t1 • Since P (x) + x 
has degree n ,  there are at most n (integer) roots (including t0) of P (x ) + x . Hence 
there are at most n elements in S Q ,  completing our proof. 

6. Define the weight of a side X Y  to be the area assigned to it, and define an antipoint 
of a side of a polygon to be one of the points in the polygon farthest from that side 
(and consequently forming the triangle with greatest area) . 

LEMMA 1 .  For any side X Y, Z is an anti point if and only if the line l through 
Z parallel to X Y  does not go through the interior of the polygon. (Note that this 
means we can assume Z is a vertex, as we shall do so henceforth). 

Proof. Clearly, if Z is an antipoint l must not go through the interior of the 
polygon. Now if l does not go through the interior of the polygon, assume there is 
a point Z' farther away from XY than Z. Since the polygon is convex, the point 
X Z' n l is in the interior of the polygon, which is a contradiction. • 

Suppose for the sake of contradiction that the sum of the weights of the sides is 
less than twice the area of some polygon. Then let S be the non-empty set of all 
convex polygons for which the sum of the weights is strictly less than twice the 
area. It is easy to check that no polygon in S can be a triangle, so we may assume 
all polygons in S have at least 4 sides. 

We first prove by contradiction that there is some polygon in S such that all of 
its sides are parallel to some other side. Suppose the contrary ; then consider one of 
the polygons in S which has the minimal number of sides not parallel to any other 
side (this exists by the well-ordering principle) . Call this polygon P = A 1 A2 · · · An ,  
and WLOG let A n  A 1 be a side which i s  not parallel to any other side of P .  Then let 
A; be the unique antipoint of An A l >  and let Au and Av be respective antipoints of 
A;- I A; and A; A;+ I · Define X to be the point such that Au X I I A; - I A ; ,  A v X I I A ; Ai+ l · 

Now consider the set T C P of points that are strictly on the same side of A u A v  
a s  An A 1 •  First of all ,  for any side i n  T , A; must b e  its antipoint, since the line 
through A; parallel to A i A H 1 does not go through the interior of P .  Similarly, any 
vertex in T is not the antipoint of any side. 

We now look at the polygon P' = A v A v+l · · · Au- I Au X .  First of all, it is clear 
that P' has fewer sides which are not parallel to any other side than P .  The area 
[P'] - [ P ]  is simply [A 1 A2 · · · A v- I AvXAu Au+ l · · · A n ] . The weights of the side 
AiAi+ l is the same in both P' and P for v ::S j < u, but for P' ,  the sum of the 
weights of the remaining two sides is [XAu A ; A v ] ,  as A; is an antipoint of both 
A u X  and A v X .  Meanwhile, the sum of the weights of remaining sides (i.e. sides in 
T) for P is [A 1 A2 · · • Av_ 1 A v A ; A u A u+l · · · An ] . Hence the difference in the sums 
of weights of P' and P is 

[XAu A ; A v ] - [A 1 A2 · · · A v- I A v A; A u Au+l · · · An ] 

= [A 1 A2 · · · A v- I Av XAuAu+ l · · · A n ] , 

the same as the difference in area (and both differences were positive). Therefore, if 
the sum of weights of P was less than 2[ P] , then certainly the sum of weights of P'  
must be less than 2[ P' ] ,  so that P' E S. However, this contradicts the minimality of 
the number of non-parallel sides in P ,  so there exists a polygon in S with opposite 
sides parallel. 
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Now, we will let R be the non-empty set of all polygons in S with all sides 
paral lel to the opposite side. Note that all polygons in R must have an even number 
of sides. We will show that there is a parallelogram in R. 

Suppose not, and that Q = B1 B2 · · · B2m is one of the polygons in R with 
the minimal number of sides, and m 2: 3 . Let X =  B1 B2 n Bzm- t Bzm and Y =  
Bm- t Bm n Bm+2 Bm+ l · Set Q' = X Bz B3 · · · Bm- t Y Bm+2 · · · Bzm · We propose that 
the increase in the sum of weights going from Q to Q' is at most twice the increase 
in area, so that Q' E R. 

To aid us, we will let h x and h y be the respective distances of X and Y from 
Bzm B1 and Bm Bm+ I · The increase in weight is 

[X Bm+t Bd + [X Bzm Bm ] + [Y Bm Bzm l  + [Y Bm+ t Bd 

- [Bt Bzm Bm ] - [Bzm Bm Bm+ d , 

which is equal to 

or 

h y  · Bt Bz hx  · B B + I 
[X B  B ] + m 

+ [ Y  B B ] + 
m m 

. I 2m 2 m m+ l 2 

On the other hand, the increase in area is [X B1 Bzm l  + [Y Bm Bm+I ] .  
It remains to show that the first expression i s  at most twice the second, or in 

other words; that is, to show that 

h y  · Bt Bzm hx · Bm Bm+ l 2 + 2 :S [XBt Bzm l + [ Y Bm Bm+d 

hx · Bt Bzm h y  · Bm Bm+l 
= 2 + 2 

which is equivalent to (h x - h y )  (B 1 Bzm - Bm Bm+ 1 )  2: 0. 
Noting that triangles B1 B2m X and Bm+I Bm Y are similar, we have h x /  h y  = 

Bt Bzm / Bm Bm+ t . so the above inequality holds. 
With the inequality proven, we now know that Q' E R, and yet Q' has fewer 

sides than Q .  This contradicts the minimality of the number of sides of Q, so there 
exists a parallelogram in R. However, the sum of the weights of a parallelogram 
clearly equals twice its area, so this contradicts the entire existence of S, as desired. 
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2 00 6  O lym p i ad Res u l ts 

The top twelve students on the 2006 USAMO were (in alphabetical order) : 

Yakov Berchenko-Kogan Needham B. Broughton Raleigh, NC 
High School 

Yi Han Phillips Exeter Academy Exeter, NH 

Sherry Gong Phillips Exeter Academy Exeter, NH 

Taehyeon Ko Phillips Exeter Academy Exeter, NH 

Brian Lawrence Montgomery Blair Silver Spring, MD 
High School 

Tedrick Leung North Hollywood N. Hollywood, CA 
High School 

Richard Mccutchen Montgomery Blair Silver Spring, MD 
High School 

Peng Shi Sir John A. MacDonald Toronto, ON 
Collegiate Institute 

Yi Sun The Harker School San Jose, CA 

Arnav Tripathy East Chapel Hill Chapel Hill, NC 
High School 

Alex Zhai University Laboratory Urbana, IL 
High School 

Yufei Zhao Don Mills Don Mills,  ON 
Collegiate Institute 

Brian Lawrence, was the winner of the Samuel Greitzer-Murray Klamkin award, given 
to the top scorer(s) on the USAMO. Brian Lawrence, Alex Zhai, and Yufei Zhao 
placed first, second, and third, respectively. They were awarded college scholarships 
of $20000, $ 15000, $ 10000, respectively, by the Akamai Foundation. The Clay Math
ematics Institute (CMI) award, for a solution of outstanding elegance, and carrying a 
$5000 cash prize, was presented to Brian Lawrence for his solution to USAMO Prob
lem 5, presented as the third solution to the problem in this book. 

The USA team members were chosen according to their combined performance on 
the 35th annual USAMO, and the Team Selection Test that took place at the Mathemat
ical Olympiad Summer Program (MOSP), held at the University of Nebraska-Lincoln, 
June 5 - July 1 ,  2005 . Members of the USA team at the 2006 IMO (Ljubljana, Slove
nia) were Zachary Abel, Zarathustra (Zeb) Brady, Taehyeon (Ryan) Ko, Yi Sun, Amav 
Tripathy, and Alex Zhai. Zuming Feng (Phillips Exeter Academy) and Alex Saltman 
(Stanford University) served as team leader and deputy leader, respectively. The team 
was also accompanied by Steven Dunbar (University of Nebraska-Lincoln), as ob
server of the deputy leader. 

There were 498 contestants from 90 countries in the 2006 IMO. Gold medals were 
awarded to students scoring between 28 and 42 points, silver medals to students scor
ing between 1 9  and 27 points, and bronze medals to students scoring between 1 5  and 
1 8 points . There were 42 gold medalists, 89 silver medalists , 1 22 bronze medalists, 
and honorable mentions (awarding to non-medalists solving at least one problem com
pletely) .  There were 3 perfect papers (Iurie Boreico from Republic of Moldova, Zhiyu 
Liu from People's Republic of China, and Alexander Magazinov from Russian Federa
tion) on this difficult exam, even though it has two relatively easy entry level problems 
(in problems 1 and 4). Tripathy's  30 tied for 1 6th place overall. The team's  individual 
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performances were as follows :  

Able 
Brady 
Ko 
Sun 
Tripathy 
Zhai 

SILVER Medallist 
GOLD Medallist 
SILVER Medallist 
SILVER Medallist 
GOLD Medallis 
SILVER Medallist 

MATHEMATICS MAGAZI N E  

In terms of total score (out of a maximum of 252), the highest ranking of the 90 par
ticipating teams were as follows :  

China 2 1 4  
Russia 1 74 
Korea 1 70 
Germany 1 57 
USA 1 54 
Romania 1 52 
Japan 146 
Iran 145 
Moldova 140 
Taiwan 136  
Poland 133  
Italy 1 32 

For more information about the USAMO or the MOSP, contact Steven Dunbar at 
sdunbar@math . unl . edu. 



;j From the Mathematical Association of America 

A Garden of Integrals • by Frank Burk 
The derivative and the integral are the fundamental notions of calcu
lus. Though there is essentially only one derivative, there is a variety 
of integrals, developed over the years for a variety of purposes, and 
this book describes them. No other single source treats all of the 
integrals of Cauchy, Riemann, Riemann-Stieltjes, Lebesgue, 
Lebesgue-Steilljes, Henstock-Kurzweil, Weiner, and Feynman. The 

basic properties of each are proved, their similarities and differences are point
ed out, and the reason for their existence and their  uses are given. 

The audience for the book is advanced undergraduate mathematics majors, grad
uate students, and faculty members. Even experienced faculty members are 
unlikely to be aware of all of the integrals in this book. Professor Burk's clear and 
well-motivated exposition makes this book a joy to read. 

Dolciani • Catalog Code: DOL-31 • 304 pp., Hardbound, 2007 
ISBN: 978-0-88385-337-5 • List: $51 .95 • MAA Member: $41 .50 

Order your copy today! 
1 .800.33 1 . 1 622 • www.maa. org 
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Hesiod's Anvil: 
Falling and Spinning Through 
Heaven and Earth 
Andrew J .  Simoson 
This book is about how poets, philosophers, 
storytellers, and scientists have described motion, 
beginning with Hesiod, a contemporary of Homer, 
who imagined that the expanse of heaven and the 
depth of hell was the distance that an anvil falls in 
nine days. This book is aimed at students who 

have finished a year-long course in calculus, but it can be used as 
a supplemental text in calculus II, vector calculus, linear algebra, differential 
equations, and modeling. It blends with equal voice romantic whimsy and 
derived equations, and anyone interested in mathematics will find new and 
surprising ideas about motion and the people who thought about it. 

Some of the things readers will learn is that Dante's implicit model of the earth 
implies a black hole at its core, that Edmond Halley championed a hollow 
earth, and that da Vinci knew that the acceleration due to the earth's gravity 
was a constant. There are chapters modeling Jules Verne's and H.G. Wells' 
imaginative flights to the moon and back, the former novelist using a great 
cannon and the latter using a gravity-shielding material.  The book analyzes 
Edgar Alan Poe's descending pendulum, H.G. Wells' submersible falling and 
rising in the Marianas Trench, a train rolling along a tunnel through a rotating 
earth, and a pebble falling down a hole without resistance. It compares 
trajectories of balls thrown on the Little Prince's asteroid and on Arthur C. 
Clarke's rotating space station, and it solves an old problem that was perhaps 
inspired by one of the seven wonders of the ancient world . 

The penultimate chapter is a story, based upon the Mayans, that loosely ties 
together the ideas about falling and spinning motion discussed in the book. 
Nearly all the chapters have exercises, some straightforward and some open 
ended, that may serve as the beginnings of students' honors projects. 

Dolciani Mathematical Expositions • Catalog Code: DOL-30 • 250 pp., Hardbound, 2007 
ISBN 13: 978-0-88385-336-8 • List: $54.95 • MAA Member: $43.95 
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The Early Mathematics of Leonhard Euler 
C. Edward Sandifer 
This book gives a portrait of the world's most exciting mathematics between 
1 725 and 1 741,  rich in technical detail, woven with connections within Euler's 
work and with the work of other mathematicians in other times and places. 

Spectrum • EUL-01 • 416 pp., Hardbound, 2007 • ISBN: 978-088385-559-1 
Lis t: $49.95 • MAA Member: $39.95 

The Genius of Euler • Reflections on His Life and Work 
William Dunham, Editor 
The book is a testimonial to a mathematician of unsurpassed i nsight, industry, 
and ingenuity--one who has been rightly called "the master of us all ."  The col
lected articles, aimed at a mathematically literate audience, address aspects of 
Euler's l i fe and work, from the biographical to the historical to the mathemati 
ca l .  

Spectrum • EUL-02 • 324 pp., Hardbound, 2007 • ISBN : 978-088385-558-4 
List: $47.95 • MAA Member: $38.50 

How Euler Did It 
C. Edward Sandifer 
How Euler Did It is a collection of 40 monthly columns that appeared on MAA 
Online between November 2003 and February 2007 about the mathematical 
and scientific work of the great 18th-century Swiss mathematician Leonhard 
Euler. 

Spectrum • EUL-03 • 304 pp., Hardbound, 2007 • ISBN: 978-088385-563-8 
List: $51 .95 • MAA Member: $41 .95 

Euler and Modern Science 
N.N.  Bogolyubov, G.K. Mikhaiiov, and A.P. Yushkevich, Editors 
We speak of the age of Euler. A justification of this term is provided by a list of 
scienti fic terms connected wi th Euler's name and his many contributions to 
pure mathematics, wel l-known and, in part, covered in this volume. This col
lection contains an extensive treatment of Euler's contributions outside pure 
mathematics. 

Spectrum • EU L-04 • 425 pp., Hardbound, 2007 • ISBN: 978-088385-564-5 
List: $59.95 • MAA Member: $47.95 

Euler at 300 • An Appreciation 
Robert E. Bradley, Lawrence A. D'Antonio, and C. Edward Sandifer, Editors 
During the years leading up to Leonhard Euler's tercentenary, at more than a 
dozen academic meetings across the USA and Canada, mathematicians and 
historians of mathematics honored Euler in papers detailing his l ife and work. 
Thi s  book collects together more than 20 papers based on some of the most 
memorable of these contributions. 

Spectrum • EUL-05 • 325 pp., Hardbound, 2007 • ISBN: 978-088385-565-2 
List: $51 .95 • MAA Member: $41 .95 

Order all s books and save 1o0/o 
Catalog Code: EULSET • List: $235.50 • MAA Member: $18g.oo 
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